Атомная масса лютеций. Лютеций химический элемент. Очень высокая стоимость лютеция значительно ограничивает его широкое применение

ЛЮТЕЦИЙ, Lu (лат. Lutetium; от латинского Lutetia Parisiorum или Lutetia — Лютеция , название главного города галльского племени паризиев, современный Париж * а. lutecium; н. Lutetium, Kassiopeium; ф. lutecium; и. lutecio), — химический элемент III группы периодической системы, атомный номер 71, атомная масса 174,967, относится к редкоземельным элементам (иттриевая подгруппа лантаноидов). Природный лютеций представлен двумя изотопами — 175 Lu (97,4%) и 176 Lu (2,6%); последний радиоактивен, претерпевая Я-распад, он превращается в стабильный изотоп 176 Hf, Т1/2=35,4 млрд. лет. Известно более 20 искусственных изотопов и ядерных изомеров лютеция. Открыт в 1907 Ж. Урбеном () и независимо от него К. Ауэром фон Вельсбахом () и Ч. Джеймсом ().

Лютеций — мягкий серебристо-белый металл с гексагональной плотноупакованной кристаллической решёткой (а = 0,35031 нм, с = 0,5509 нм), плотность 9840 кг/м3, t плавления около 1660°С, t кипения около 3410°С, теплоёмкость 26,5 Дж/(моль.К), удельное электрическое сопротивление 79.10 -4 (Ом.м), температурный коэффициент линейного расширения 12,5.10 К -1 , коэффициент Пуассона 0,233, легко поддаётся механической обработке. Для лютеция характерна степень окисления +3. На воздухе лютеций покрывается плотной устойчивой оксидной плёнкой, при нагревании до 400°С окисляется. При комнатной температуре реагирует с соляной, азотной, серной и ортофосфорной кислотами, при повышенных температурах (до 200°С) взаимодействует с водородом , бором , углеродом , азотом , серой . Оксид (сесквиоксид) Lu 2 О 3 получают термическим разложением нитрата, оксалата и других соединений лютеция выше 800°С; трифторид (LuF 3) — осаждением из водных растворов солей лютеция при действии фтористоводородной кислоты, может быть также получен взаимодействием Lu 2 О 3 с газообразным HF, F 2 или NH 4 HF 2 , термическим разложением фтораммонийных комплексов при 400-500°С и др.; гидроксид Lu(OH) 3 — обработкой водорастворимых солей лютеция щелочами. Среднее содержание лютеция в земной коре 8-10 -5 % по массе, в морской воде 1,2.10 -6 мг/л. Кислые горные породы содержат больше лютеция (1.10 -4 %), чем основные (6.10 -5 %) и осадочные (7.10 -5 %). Как и другие лантаноиды, лютеций присутствует в небольших количествах во многих минералах иттриевой подгруппы редкоземельных элементов ксенотим YPO 4 , иттриалит (Y, Th, U, Fe) 2 Si 2 О 7 , гадолинит Y 2 FeBe 2 Si 2 О 10 , самарскит (Y, Er) (Nb, Ta) 2 О 6 и др..

При переработке суммы редкоземельных элементов, выделенной из минералов, лютеций выделяется с фракцией тяжёлых редкоземельных элементов. Отделяют лютеций от других редкоземельных элементов методами экстракции и ионного обмена . Металлический лютеций получают кальциетермическим восстановлением LuF 3 . Применяют в качестве газопоглотителя в электровакуумных приборах; чистый лютеций — для исследовательских целей. Оксид лютеция — компонент жаропрочной керамики. Трифторид лютеция используют для получения фторидных лазерных материалов.

Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

71
2 9 32 18 8 2
ЛЮТЕЦИЙ
174,97
4f 14 5d 1 6s 2

Лютеций

А это старушка, седая и строгая,
Которая доит корову безрогую,
Лягнувшую старого пса без хвоста,
Который за шиворот треплет кота,
Который пугает и ловит синицу,
Которая часто ворует пшеницу,
Которая в темном чулане хранится,
В доме,
Который построил Джек...

Эти детские стихи приходят на память, когда пытаешься коротко пересказать историю открытия элемента №71 – лютеция. Судите сами:

новая редкоземельная окись – лютеция – выделена Жоржем Урбеном в 1907 г. из иттербиевой земли,
которая в 1878 г. выделена Мариньяком из эрбиевой земли,
которая в 1843 г. выделена Мозандером из иттриевой земли,
которая открыта Экебергом в 1797 г. в минерале гадолините.

Название нового элемента Урбен произвел от Lutetia – старинного латинского названия столицы Франции Парижа (видимо, в противовес гольмию).

Приоритет Урбена оспаривал Ауэр фон Вельсбах, который открыл элемент №71 несколькими месяцами позже и назвал его кассиопеем. В 1914 г. Международная комиссия по атомным весам вынесла решение именовать элемент все-таки лютецием, но еще много лет в литературе, особенно немецкой, фигурировало название «кассиопей».

Лютеций – последний лантаноид, самый тяжелый (плотность 9,849 г/см 3), самый тугоплавкий (температура плавления 1700±50°C), самый, пожалуй, труднодоступный и один из самых дорогих: 12 тыс. рублей за килограмм – цена 1970 г.

Из соединений элемента №71 выделяется, пожалуй, лишь его трифторид – как наименее тугоплавкое соединение из всех трифторидов редкоземельных элементов. Вообще-то температурные характеристики галогенидов редкоземельных элементов изменяются закономерно, но характерно, что при «полегчании» аниона минимум температуры плавления все время смещается вправо по ряду лантаноидов. Самый легкоплавкий иодид – у празеодима, бромид – у самария, хлорид – у тербия и, наконец, фторид – у лютеция.

В полном соответствии с правилом лантаноидного сжатия атом лютеция имеет наименьший среди всех лантаноидов объем, а ион Lu 3+ – минимальный радиус, всего 0,99 Ǻ. По остальным же характеристикам и свойствам лютеций мало отличается от других лантаноидов.

Природный лютеций состоит всего из двух изотопов – стабильного лютеция-175 (97,412%) и бета-активного лютеция-176 (2,588%) с периодом полураспада 20 млрд лет. Так что за время существования нашей планеты количество лютеция слегка уменьшилось. Искусственным путем получены еще несколько радиоизотопов лютеция с периодами полураспада от 22 минут до 500 дней. Последний изотоп лютеция (нейтронно-дефицитный, с массовым числом 166) получен в 1968 г. в Дубне. Из других атомных разновидностей элемента №71 некоторый интерес представляет изомер лютеция-176, который может быть использован для определения содержания лютеция в соединениях редкоземельных элементов методом активационного анализа. Получают лютеций-176 (изомер) из природного лютеция в нейтронных потоках ядерных реакторов. Период полураспада изомера во много раз меньше, чем у изотопа 176 Lu в основном состоянии; он равен всего 3,71 часа. Практического значения элемент №71 пока не имеет. Известно, однако, что добавка лютеция положительно влияет на свойства хрома. Не исключено, что по мере того как лютеций будет становиться доступнее, его удастся использовать как катализатор или как активатор люминофоров или в лазерах, одним словом, там, где успешно работают его «собратья» по лантаноидной «команде».

Вот и закончены рассказы о лантаноидах – элементах, которым всем без исключения прочат большое будущее. Как говорится, поживем – увидим, но для оптимизма есть основания. Если бы Мариньяку, Лекоку де Буабодрану, Клеве, Ауэру фон Вельсбаху, Демарсэ и другим выдающимся исследователям редких земель, жившим в конце XIX – начале XX в., сказали, что большинство открытых ими элементов во второй половине XX в. приобретет большое практическое значение, то первооткрыватели, наверное, не поверили бы этому утверждению. Кроме, быть может, Урбена – он ведь был не только химиком, но и художником...

Атомный номер 71
Внешний вид простого вещества редкоземельный металл; твёрдый, плотный; цвет — серебристо-белый
Свойства атома
Атомная масса
(молярная масса)
174,967 а. е. м. ( /моль)
Радиус атома 175 пм
Энергия ионизации
(первый электрон)
513,0 (5,32) кДж/моль (эВ)
Электронная конфигурация 4f 14 5d 1 6s 2
Химические свойства
Ковалентный радиус 156 пм
Радиус иона (+3e) 85 пм
Электроотрицательность
(по Полингу)
1,27
Электродный потенциал Lu←Lu 3+ -2,30 В
Степени окисления 3
Термодинамические свойства простого вещества
Плотность 9,8404 /см ³
Молярная теплоёмкость 26,5 Дж/( ·моль)
Теплопроводность (16,4) Вт /( ·)
Температура плавления 1936
Теплота плавления n/a кДж /моль
Температура кипения 3668
Теплота испарения 414 кДж /моль
Молярный объём 17,8 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки 3,510
Отношение c/a 1,585
Температура Дебая n/a
Lu 71
174,967
4f 14 5d 1 6s 2

Элемент открыли (в виде оксида) в 1907 независимо друг от друга французский химик Жорж Урбен, австрийский минералог Карл Ауэр фон Вельсбах и американский химик Чарльз Джеймс. Все они обнаружили лютеций в виде примеси к оксиду иттербия, который, в свою очередь, был открыт в 1878 как примесь к оксиду эрбия, который был выделен в 1843 из оксида иттрия, обнаруженного в 1797 в минерале гадолините. Все эти редкоземельные элементы имеют очень близкие химические свойства. Приоритет открытия принадлежит Урбену.

Происхождение названия

Название элемента его первооткрыватель Жорж Урбен произвёл от латинского названия Парижа — Lutetia Parisorum. Он предложил также название неоиттербий для иттербия (который, как было выяснено в результате разделения, являлся смесью двух элементов), которое, однако, было впоследствии отброшено. В 1914 название элемента было принято Международной комиссией по атомным весам в латинской форме Lutecium. В 1949 оно было изменено на Lutetium. Русское название не изменялось.

Фон Вельсбах предложил для лютеция название кассиопий (cassiopium) в честь созвездия, для иттербия — альдебараний (aldebaranium) в честь звезды Альдебаран. Однако, учитывая приоритет Урбена в разделении лютеция и иттербия, предложения фон Вельсбаха не были приняты. Тем не менее до начала 1960-х годов немецкие учёные употребляли в своих работах название кассиопий.

Получение

Отделение лютеция от других лантаноидов ведут методами экстракции, ионного обмена или дробной кристаллизацией.

Цены

Цена металлического лютеция чистотой >99,9% составляет 3.5-5.5 тыс. долл за 1 кг. Лютеций является самым дорогим из существующих в природе редкоземельных элементов, что обусловлено трудностью его выделения из смеси РЗЭ и ограниченностью использования.

Свойства

Физические свойства

Твёрдый блестящий металл, может быть прокатан в упругую фольгу. Лютеций является самым тяжёлым элементом среди лантаноидов как по атомному весу, так и по плотности (9,8404 г/см 3). Кроме того, температура плавления лютеция (1663°C) максимальна среди всех редкоземельных элементов. Благодаря эффекту лантаноидного сжатия, среди всех лантаноидов лютеций имеет наименьший радиус иона.

Химические свойства

Очень медленно окисляется на воздухе, длительное время сохраняя блеск.

Бромид лютеция(III) (кристаллогидрат) имеет розовый цвет, хорошо растворим в воде.

С солями фтороводородной кислоты образует очень мало растворимый осадок фторида лютеция.

Со щелочами образует нерастворимый гидроксид.

Аналитическое определение

Лазерные материалы

Используется для генерации лазерного излучения на ионах лютеция. Скандат лютеция , галлат лютеция , алюминат лютеция , легированные гольмием и тулием , генерируют излучение с длиной волны 2,69 мкм , а ионами неодима 1,06 мкм, и являются превосходными материалами для производства мощных лазеров военного назначения и для медицины.

Магнитные материалы

Сплавы для очень мощных постоянных магнитов систем лютеций-железо -алюминий и лютеций-железо-кремний обладают очень высокой магнитной энергией, стабильностью свойств и высокой точкой Кюри , но очень высокая стоимость лютеция ограничивает их применение только наиболее ответственными областями использования (специальные исследования, космос и др).

Жаропрочная проводящая керамика

Некоторое применение находит хромит лютеция.

Ядерная физика и энергетика

Оксид лютеция находит небольшое по объему применение в атомной технике как поглотитель нейтронов , а также в качестве В последние годы значительный интерес к лютецию обусловлен, например, тем, что при легировании лютецием ряда жаростойких материалов и сплавов на хромоникелевой основе резко возрастает их срок службы.метастабильные состояния (общим числом 18).

Нуклид Время полураспада Форма распада
150 Lu Лютеций-150 43 ms 5 p: 68.00 %
ε: 32.00 %
151 Lu Лютеций-151 80.6 ms 19 p: 63.40 %
ε: 36.60 %
152 Lu Лютеций-152 0.7 s 1 ε: 100.00 %
εp: 15.00
153 Lu Лютеций-153 0.9 s 2 α ≈ 70.00 %
154 Lu Лютеций-154 ≈ 2 s (9+)
155 Lu Лютеций-155 68 ms 1 1/2+
156 Lu Лютеций-156 494 ms 12 9+
157 Lu Лютеций-157 6.8 s 18 (11/2-)
158 Lu Лютеций-158 10.6 s 3 ε: 99.09 %
α: 0.91 %
159 Lu Лютеций-159 12.1 s 10 ε: 100.00 %
α: 0.10 %
160 Lu Лютеций-160 36.1 s 3
161 Lu Лютеций-161 77 s 2 (9/2-)
162 Lu Лютеций-162 1.37 m 2
163 Lu Лютеций-163 3.97 m 13 ε: 100.00 %
164 Lu Лютеций-164 3.14 m 3 ε: 100.00 %
165 Lu Лютеций-165 10.74 m 10 ε: 100.00 %
166 Lu Лютеций-166 2.65 m 10 (3-)
167 Lu Лютеций-167 51.5 m 10 1/2+
168 Lu Лютеций-168 5.5 m 1 3+
169 Lu Лютеций-169 34.06 h 5 1/2-
170 Lu Лютеций-170 2.012 d 20 (4)-
171 Lu Лютеций-171 8.24 d 3 1/2-
172 Lu Лютеций-172 6.70 d 3 1-
173 Lu Лютеций-173 1.37 y 1 ε: 100.00 %
174 Lu Лютеций-174 3.31 y 5 (6)-
175 Lu Лютеций-175 Стабильный
176 Lu Лютеций-176 3.76E+10 y 7 β - : 100.00 %
177 Lu Лютеций-177 6.6475 d 20 23/2-
178 Lu Лютеций-178 28.4 m 2 (9-)
179 Lu Лютеций-179 4.59 h 6 β - : 100.00 %
180 Lu Лютеций-180 5.7 m 1 β - : 100.00 %
181 Lu Лютеций-181 3.5 m 3 β - : 100.00 %
182 Lu Лютеций-182 2.0 m 2 β - : 100.00 %
183 Lu Лютеций-183 58 s 4 β - : 100.00 %
184 Lu Лютеций-184 20 s 3 β - : 100.00 %

Лютеций

ЛЮТЕ́ЦИЙ -я; м. Химический элемент (Lu) группы редкоземельных металлов (используется в ядерной, лазерной технике и т.п.). От названия города Лутеция в Галлии на реке Сене (Lutetia), на месте которого расположен Париж.

люте́ций

(лат. Lutetium), химический элемент III группы периодической системы, относится к лантаноидам. Название от Лютеции. Серебристо-белый металл. Плотность 9,849 г/см 3 , t пл 1660°C.

ЛЮТЕЦИЙ

ЛЮТЕ́ЦИЙ (лат. Lutetium, от галльского названия Парижа - Lutetia, Лютеция), Lu (читается «лютеций»), химический элемент с атомным номером 71, атомная масса 174,967. Природный лютеций представляет собой смесь стабильного 175 Lu (97,40% по массе) и слабо радиоактивного 176 Lu (2,6%, период полураспада Т 1/2 = 2,4.10 10 лет). Конфигурация трех внешних электронных слоев 4s 2 p 6 d 10 f 14 5s 2 p 6 d 1 6s 2 . Образует соединения в степени окисления +3 (валентность III).
Лантаноид. Расположен в группе IIIB периодической системы, в шестом периоде. Радиус нейтрального атома лютеция 0,174 нм, радиус иона Lu 3+ 0,100-0,117 нм. Энергии последовательной ионизации атома лютеция 6,254, 12,17, 25,5, 43,7 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,14.
История открытия
Открыт в 1907 французским химиком Ж. Урбеном (см. УРБЕН Жорж) , который обнаружил и выделил его из открытого в 1878 Ж. Мариньяком иттербия. (см. ИТТЕРБИЙ)
Нахождение в природе
Содержание в земной коре 8·10 -5 % по массе. Входит в состав таких минералов, как ксенотим (см. КСЕНОТИМ) , бастнезит (см. БАСТНЕЗИТ) , фергусонит (см. ФЕРГУСОНИТ) , эвксенит.
Получение
При переработке смеси редкоземельных элементов, выделенной из минералов, лютеций выделяется с фракцией тяжелых редкоземельных элементов. Отделяют лютеций от других редкоземельных элементов методами ионной хроматографии или экстракции. Металлический лютеций получают восстановлением LuF 3 кальцием.
Физические и химические свойства
Лютеций серебристо-серый металл. Имеет гексагональную решетку с параметрами а = 0,35031 нм и с = .0,55509 нм. Температура плавления 1660°C, температура кипения 3410°C, плотность 9,849 кг/дм 3 . На воздухе покрывается плотной устойчивой оксидной пленкой. При 400°C лютеций реагирует с кислородом, галогенами, серой и другими неметаллами. Реагирует с минеральными кислотами.
Оксид Lu 2 О 3 обладает слабоосновными свойствами. Основание Lu(ОН) 3 - слабое, поэтому в водных растворах ионы Lu 3+ в значительной степени гидролизованы. К растворимым солям лютеция относятся хлорид, нитрат, ацетат и сульфат. Оксалат, фторид, карбонат и фосфат лютеция - плохо растворимы.
Применение
Оксид лютеция используется как добавка к высокотемпературным керамикам. Фторид лютеция используют для получения фторидных лазерных материалов.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "лютеций" в других словарях:

    - (Lutetium), Lu, химический элемент III группы периодической системы, атомный номер 71, атомная масса 174,967; относится к редкоземельным элементам; металл. Открыт французским химиком Ж. Урбеном в 1907 … Современная энциклопедия

    - (лат. Lutetium) Lu, химический элемент III группы периодической системы, атомный номер 71, атомная масса 174,967, относится к лантаноидам. Название от Лютеции. Серебристо белый металл. Плотность 9,849 г/см³, tпл 1660 .С … Большой Энциклопедический словарь

    - (символ Lu), металлический элемент ряда ЛАНТАНОИДОВ, открыт в 1906 г. вместе с ИТТЕРБИЕМ. Получают из мона цитовых руд. Используется как катализатор, промышленного значения не имеет. Свойства: атомный номер 71, атомная масса 174,97; плотность… … Научно-технический энциклопедический словарь

    Lu (лат. Lutetium; от лат. Lutetia Parisiorum или Lutetia Лютеция, назв. главного города галльского племени паризиев, совр. Париж * a. lutecium; н. Lutetium, Kassiopeium; ф. lutecium; и. lutecio), хим. элемент III гр. периодич. системы,… … Геологическая энциклопедия


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУВПО «Пермский государственный национальный исследовательский университет»

Кафедра неорганической химии

Лютеций. Производство лютеция

Выполнила: студентка 5 курса

кафедры неорганической химии

Глазунова Е.А.

Проверил: Корзанов В.С.

Пермь,2014г

История открытия

Lu, химический элемент III гр. периодической системы. Относится к редкоземельным элементам (иттриевая подгруппа лантаноидов). Природный лютеций состоит из двух изотопов 175Lu (97,40%) и 176Lu (2,6%); 176Lu радиоактивен. Конфигурация внешней электронной оболочки 4f145s25p65d16s2; степень окисления +3

Элемент в виде оксида в 1907 году независимо друг от друга открыли французский химик Жорж Урбэн, австрийский минералог Карл Ауэр фон Вельсбах и американский химик Чарльз Джеймс. Все они обнаружили лютеций в виде примеси к оксиду иттербия, который, в свою очередь, был открыт в 1878 г. как примесь к оксиду эрбия, выделенному в 1843 г. из оксида иттрия, обнаруженного в 1797 г. в минерале гадолините. Все эти редкоземельные элементы имеют очень близкие химические свойства. Приоритет открытия принадлежит Ж. Урбэну.

Происхождение названия

Название элемента его первооткрыватель Жорж Урбен произвёл от латинского названия Парижа -- Lutetia Parisorum. Для иттербия, от которого был отделён лютеций, было предложено название неоиттербий. Оспаривавший приоритет открытия элемента Фон Вельсбах предложил для лютеция название кассиопий (cassiopium), а для иттербия -- альдебараний (aldebaranium) в честь созвездия Северного полушария и самой яркой звезды созвездия Тельца. Учитывая приоритет Урбена в разделении лютеция и иттербия, в 1914 году Международная комиссия по атомным весам приняла название Lutecium, которое в 1949 г. было изменено на Lutetium (русское название не менялось). Тем не менее, до начала 1960-х годов в работах немецких учёных употреблялось название кассиопий.

Свойства

Физические свойства

Лютеций -- металл серебристо-белого цвета, легко поддаётся механической обработке. Он является самым тяжёлым элементом среди лантаноидов как по атомному весу, так и по плотности (9,8404 г/смі). Температура плавления лютеция (1663 °C) максимальна среди всех редкоземельных элементов. Благодаря эффекту лантаноидного сжатия, среди всех лантаноидов лютеций имеет наименьшие атомный и ионный радиусы.

Химические свойства

При комнатной температуре на воздухе лютеций покрывается плотной оксидной плёнкой, при температуре 400 °C окисляется. При нагреве взаимодействует с галогенами, серой и другими неметаллами.

Лютеций реагирует с неорганическими кислотами с образованием солей.

Гидроксиды

Lu(OH) 3 в воде почти нерастворим. Lu(OH) 3 обладает преимущественно основным характером, легко реагирует с соляной, азотной и серной кислотами, образуя соответствующие соли и по силе находятся между Mg(OH) 2 и Al(OH) 3 . Адсорбционная способность гидроксида ярко выражена. Lu(OH) 3 и предложен в качестве специальных сорбентов.

Гидропероксиды

Lu(OH) 2 (OOH)·nH 2 O получают из раствора соли или из гидроксида в виде желатинообразного осадка действием щелочи и пероксида водорода.

Предполагается следующий механизм образования гидропероксидов:

Lu(OH) 3 + H 2 O 2 > Lu(OH) 2 (OOH) + H 2 O.

Гидропероксид очень неустойчив. Находясь в равновесии с водными растворами, он теряет часть активного кислорода. Концентрированная H 2 SO 4 разлагает его с выделением озона. Под действием разбавленной H 2 SO 4 выделяется H 2 O 2 ; так же действуют CO 2 и многие кислоты. При высушивании над концентрированной H 2 SO 4 пероксид теряет воду и часть активного кислорода. При 200єС происходит полное отщепление активного кислорода. Гидропероксид лютеция требует дальнейшего исследования.

Сульфаты.

Гидратированный сульфат лютеция состава Lu 2 (SO 4) 3 ·nH 2 O получают растворением оксида, гидроксида или карбоната в разбавленной серной кислоте и последующим упариванием раствора. Сульфаты выделяются с различным содержанием кристаллизационной воды: Lu - 8.

Безводные сульфаты

Получают нагреванием гидрата до 600-650єС, либо действием концентрированной H 2 SO 4 на Lu 2 O 3 при сильном нагревании с последующим удалением избытка кислоты. Сначала образуется кислый сульфат, который при нагревании разлагается:

Ln 2 O 3 + 6H 2 SO 4 > 2Ln(HSO 4) 3 + 3H 2 O,

2Ln(HSO 4) 3 > Ln 2 (SO 4) 3 + 3SO 3 + 3H 2 O.

Дальнейшее нагревание ведет к образованию основной соли и около 900°С состав его отвечает формуле Lu 2 О 3 SО 3 . Выше 1000°С основная соль переходит в оксид.

Безводный сульфат Lu 2 (SО 4) 3 представляет собой гигроскопичный порошок. В холодной воде хорошо растворим.

Тиосульфаты

Lu 2 (S 2 O 3) 3 образуется при взаимодействии тиосульфата натрия или бария с солью лютеция. Тиосульфат хорошо растворим в воде, поэтому он не выпадает в виде осадка из разбавленных растворов. Из концентрированных растворов постепенно осаждается в виде порошкообразной массы. Тиосульфат полностью высаливается из раствора метиловым или этиловым спиртом. При подкислении раствора хлороводородной кислотой - разлагается:

Lu 2 (S 2 O 3) 3 > Lu 2 (SO 3) 3 + 3S.

Повышение температуры до 800-1000єС ведет к разложению тиосульфата до оксосульфита Lu 2 O(SO 3) 2 .

Селениты

Lu 2 (SeO 3) 3 ·nH 2 O получают действуя на соль лютеция селенитом натрия или селенистой кислотой. Мало растворим в воде и минеральных кислотах Растворим в минеральных кислотах в присутствии H 2 O 2 .

Lu(NO 3) 3 получают по реакции:

Lu 2 O 3 + 6N 2 O 4 > 2Lu(NO 3) 3 + 3N 2 O 3 .

В виде кристаллогидратов нитрат получают, растворяя оксид, гидроксид и карбонат лютеция в азотной кислоте с последующим упариванием раствора:

Lu 2 O 3 + 6HNO 3 > 2Lu(NO 3) 3 + 3H 2 O,

Lu 2 (CO 3) 3 + 6HNO 3 > 2Lu(NO 3) 3 + 3H 2 O + 3CO 2 .

Силикаты

Lu 2 O 3 ·SiO 2 получают, прокаливая оксалатлютеция с эквивалентным количеством кварцевого песка при 1700єС до плавления:

Lu 2 (C 2 O 4) 3 + 3SiO 2 +3/2O 2 = Lu 2 (SiO 3) 3 + 6CO 2 .

Силикат не растворяется в воде. Установлено, что лютеций образует ортосиликат Lu 2 O 3 ·SiO 2 и пиросиликат Lu 2 O 3 ·2SiO 2 .

Молибдаты

Lu 2 (MoO 4) 3 получают, сплавляя хлорид лютеция с молибдатами щелочных металлов или обезвоживая кристаллогидраты молибдатов нагреванием до плавления. Может быть получен сплавлением Lu 2 O 3 с MoO 3 при 850-900єС.

Молибдат лютеция с молибдатами других металлов образует двойные соли. Получаются кристаллизацией из расплава, содержащего оксид лютеция, молибдена и щелочного элемента. Кристаллизацией из расплава, содержащего молибдат лютеция и молибдат щелочного элемента, образуются двойные молибдаты состава MeLu(MoO 4) 2 , Me 5 Lu(MoO 4) 4 и др. (где Me - Li, Na, K, Rb, Cs).

Вольфраматы

Lu 2 (WO 4) 3 ·nH 2 O получают из раствора при взаимодействии вольфрамата натрия с нитратом лютеция. Безводный вольфрамат Lu 2 (WO 4) 3 получают спеканием оксида Lu 2 O 3 и WO 3 при 1000єС. Вольфрамат лютеция нерастворим в воде, спирте и ацетоне. Разбавленные минеральные кислоты, и растворы щелочей при комнатной температуре действуют на вольфрамат медленно. При 80-120єС кислоты и щелочи растворяют его нацело.

Оксалаты

Lu 2 (C 2 O 4) 3 ·nH 2 O получают, добавляя щавелевую кислоту, либо ее соль к нейтральному или слабокислому раствору (рН=2-3) соли лютеция:

Lu 2 (SO 4) 3 + 3H 2 C 2 O 4 = Lu 2 (C 2 O 4) 3 + 3H 2 SO 4 .

Оксалат выпадает в виде белого творожистого осадка, который при нагревании становится кристаллическим. В большинстве случаев оксалат кристаллизуется с 10 молекулами воды.

Получение

Получают осаждением из водных растворов солей лютеция при действии фтористоводородной кислоты, может быть также получен взаимоействием Lu 2 O 3 с газообразным HF, F 2 или NH 2 HF 2 , термическим разложением фтораммонийных комплексов при 400-500°С и др. Для выделения Lu(III) из раствора обычно используют осаждение оксалата (рН 3-4). Металлический лютеций получают восстановлением LuF 3 кальцием

Области применения

лютеций редкоземельный металл

Металлургия.

Высокое химическое сродство к неметаллам (H, C, P, N, S, O), обычно присутствующим в черных металлах и их сплавах обусловило использование лютеция для эффективного удаления (раскисления, десульфурации) этих неметаллов из различных сталей. Добавление 2 кг лютеция на тонну стали, существенно увеличивает ее прочность и ковкость. Использование силицидов лютеция при производстве трубной стали, улучшает ее ударную вязкость и обрабатываемость.

Важную роль играет лютеций в производстве высокопрочного чугуна.

Добавка 0,15 % лютеция значительно улучшает физико-механические свойства чугуна. РЗЭ постепенно вытесняют использующийся для этих же целей магний.

Жаропрочные магнитные сплавы с лютецием применяются для производства деталей реактивных самолетов, управляемых снарядов, космических аппаратов

Стекольная и керамическая промышленность.

Соединения лютеция применяют как для окрашивания стекла, так и для обесцвечивания его для изготовления специальных стекол, поглощающих УФ-излучение

Перспективно применение лютеция для изготовления специальной керамики. Широкое применение нашли оксиды лютеция в качестве абразивных материалов для полировки листового и зеркального стекла, телевизионных трубок, бинокулярных линз, прецизионных оптических стекол, линз объективов и т. д.

Размещено на сайт

Подобные документы

    Современный метод получения, основные достоинства и недостатки алюминия. Микроструктура, физические и химические свойства металла. Применение алюминия как особо прочного и легкого материала в промышленности, ракетной технике, стекловарении, пиротехнике.

    презентация , добавлен 20.10.2014

    Полиакрилонитрил как труднокристаллизующийся линейный, карбоцепный полимер белого цвета, его структура. Свойства данного соединения: химические, физические, термические. Производство полиакрилонитрила и главные направления его практического применения.

    реферат , добавлен 01.03.2011

    Общие сведения об элементе. Его применение, физические и химические свойства. Ниобий в свободном состоянии, его соединения с галогенами, карбидами и нитридами. Оксиды металла и их соли. Добыча ниобия на территории России. Страны лидеры в его производстве.

    реферат , добавлен 17.05.2015

    Электронное строение и степени окисления олова. Нахождение элемента в природе и способ получения. Химические и физические свойства металла и его соединений. Оловянные кислоты. Влияние олова на здоровье человека. Область применения металла и его сплавов.

    курсовая работа , добавлен 24.05.2015

    Физические и химические свойства меди: тепло- и электропроводность, атомный радиус, степени окисления. Содержание металла в земной коре и его применение в промышленности. Изотопы и химическая активность меди. Биологическое значение меди в организме.

    презентация , добавлен 12.11.2014

    Физико-химические, магические и лечебные свойства платины. История ее открытия и исследований, особенности добычи. Применение данного металла и его сплавов в медицине и ювелирном деле. Платиновые изделия в мире. Стоимость платины по банковскому курсу.

    презентация , добавлен 14.04.2015

    Определение эквивалентной массы металла и соли методом вытеснения водорода. Ход и данные опыта, характеристика приборов. Использование магния в качестве металла, его основные химические свойства. Расчет абсолютной и относительной погрешностей опыта.

    лабораторная работа , добавлен 05.05.2013

    Физические и химические свойства меди - первого металла, который впервые стал использовать человек в древности за несколько тысячелетий до нашей эры. Значение меди для организма человека. Область ее применения, использование в народной медицине.

    презентация , добавлен 19.05.2014

    Физические и химические свойства и электронное строение атома олова и его соединений с водородом, галогеном, серой, азотом, углеродом и кислородом. Оксиды и гидроксиды олова. Окислительно-восстановительные процессы. Электрохимические свойства металла.

    курсовая работа , добавлен 06.07.2015

    Актуальность производства метанола. Физические и химические свойства. Подготовка углеводородного сырья. Производство синтез-газа. Получение целевого продукта. Структурный анализ затрат. Формы отравления метаноловым спиртом. Применение метанола в мире.