Формы представления статистических данных. Графические методы представления статистических данных

:

Текстовая форма

Табличная форма

Статистическая таблица

Статистические графики – это условные изображения числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем. Графическая форма облегчает рассмотрение статистических данных, делает их наглядными, выразительными, обозримыми. Однако графики имеют определенные ограничения: прежде всего, график не может включить столько данных, сколько может войти в таблицу; кроме того, на графике показываются всегда округленные данные – не точные, а приблизительные. Таким образом, график используется только для изображения общей ситуации, а не деталей. Последний недостаток – трудоемкость построения графиков. Он может быть преодолен использованием персонального компьютера (например, «Мастером диаграмм» из пакета Microsoft Office Excel).

Определение эмпирической функции распределения.

Выборочная (эмпири́ческая) фу́нкция распределе́ния в математической статистике - это приближение теоретической функции распределения, построенное с помощью выборки из него.

Определение

Пусть - выборка из распределения случайной величины , задаваемого функцией распределения . Будем считать, что , где , - независимые случайные величины, определённые на некотором пространстве элементарных исходов . Пусть . Определим случайную величину следующим образом:

где - индикатор события , - функция Хевисайда. Таким образом, выборочная функция распределения в точке равна относительной частоте элементов выборки, не превосходящих значение . Случайная величина называется выборочной функцией распределения случайной величины и является аппроксимацией для функции . Существует результат, показывающий, что при функция равномерно сходится к , и указывающий скорость сходимости.

Гистограмма

Гистограмма используется для графического представления распределений непрерывно варьирующих признаков и состоит из примыкающих друг к другу прямоугольников, как показано на рис. 2.1. Основание каждого прямоугольника равно ширине интервала группировки, а высота его такова, что площадь прямоугольника пропорциональна частоте (или частости) попадания в данный интервал. Если ряд безинтервальный, то ширина всех столбцов выбирается произвольной, но одинаковые. Таким образом, высоты прямоугольников должны быть пропорциональны величинам

где n i - частота i -го интервала группировки; h i - ширина i -го интервала группировки.

На графике гистограммы основание прямоугольников откладывается по оси абсцисс (x ), а высота - по оси ординат (у ) прямоугольной системы координат.

Однако в тех случаях, когда ширина всех интервалов группировки одинакова, вид гистограммы не изменится, если по оси ординат откладывать не величины р i , а частоты интервалов n i .

Рис. 2.1. Гистограмма распределения результатов в предыдущем примере (когда ширина некоторых интервалов группировки неодинакова).

В этом случае чтобы не нарушить принцип построения гистограммы (площади прямоугольников пропорциональны частотам интервалов), по оси ординат уже нельзя откладывать частоты, а надо – высоты прямоугольников (которые должны быть пропорциональны отношениям ).

Полигон частот

Другим распространенным способом графического представления является полигон частот.

Полигон частот образуется ломаной линией, соединяющей точки, соответствующие срединным значениям интервалов группировки и частотам этих интервалов, срединные значения откладываются по оси х , а частоты – по оси у .

Из сравнения двух рассмотренных способов графического представления эмпирических распределений следует, что для получения полигона частот из построенной гистограммы нужно середины вершин прямоугольников, образующих гистограмму, соединить отрезками прямых. Пример полигона частот представлен на рис. 2.2.

Рис. 2.2. Полигон частот

Полигон частот используется для представления распределений как непрерывных, так и дискретных признаков. В случае непрерывного распределения полигон частот является более предпочтительным способом графического представления, чем гистограмма, если график эмпирического распределения описывается плавной зависимостью.

21.Гипо́теза (др.-греч. ὑπόθεσις - предположение; от ὑπό - снизу, под + θέσις - тезис) - предположение или догадка; утверждение, предполагающее доказательство, в отличие отаксиом

Постулатов, не требующих доказательств. Гипотеза считается научной, если она удовлетворяет критерию Поппера, т.е. потенциально может быть проверена критическим экспериментом, а так же если она соответствует другим критериям, отличающим науку от не науки.

Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным. Примеры статистических гипотез в педагогических исследованиях :

Гипотеза 1. Успеваемость класса стохастически (вероятностно) зависит от уровня обучаемости учащихся.

Гипотеза 2. Усвоение начального курса математики не имеет существенных различий у учащихся, начавших обучение с 6 или 7 лет.

Гипотеза 3. Проблемное обучение в первом классе эффективнее по сравнению с традиционной методикой обучения в отношении общего развития учащихся.

Пример 1. Процесс производства некоторого медицинского препарата весьма сложен. Несущественные на первый взгляд отклонения от технологии вызывают появление высокотоксичной побочной примеси. Токсичность этой примеси может оказаться столь высокой, что даже такое ее количество, которое не может быть обнаружено при обычном химическом анализе, может оказаться опасным для человека, принимающего это лекарство. В результате, прежде чем выпускать в продажу вновь произведенную партию, ее подвергают исследованию на токсичность биологическими методами. Малые дозы лекарства вводятся некоторому количеству подопытных животных, например, мышей, и результат регистрируют. Если лекарство токсично, то все или почти все животные гибнут. В противном случае норма выживших велика.

Исследование лекарства может привести к одному из возможных способов действия: выпустить партию в продажу (а 1), вернуть партию поставщику для доработки или, может быть, для уничтожения (а 2).

Ошибки двух видов, связанные с действиями а 1 и а 2 совершенно различны, различна и важность избежания их. Сначала рассмотрим случай, когда применяется действие а 1 , в то время когда предпочтительнее а 2 . Лекарство опасно для пациента, в то время как оно признано безопасным. Ошибка этого вида может вызвать смерть пациентов, употребляющих этот препарат. Это ошибка первого рода, так как нам важнее ее избежать.

Рассмотрим случай когда предпринимается действие а 2 , в то время когда а 1 является более предпочтительным. Это означает, что вследствие неточностей в проведении эксперимента партия нетоксичного лекарства классифицировалась как опасная. Последствия ошибки могут выражаться в финансовом убытке и в увеличении стоимости лекарства. Однако случайное отвержение совершенно безопасного лекарства, очевидно, менее нежелательно, чем, пусть даже изредка происходящие гибели пациентов. Отвержение нетоксичной партии лекарства – ошибка второго рода.

Допустимая вероятность ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).

22. Проверка статистической гипотезы (testing statistical hypotheses) - это процесс принятия решения о том, противоречит ли рассматриваемая статистическая гипотеза наблюдаемой выборке данных.

Статистический тест или статистический критерий - строгое математическое правило, по которому принимается или отвергается статистическая гипотеза .

· 23.классификация гипотез

· простая – указано одно обстоятельство, при наличии или отсутствии которого действует юридическая норма;

· сложная – наличие в гипотезе одновременно двух или более обстоятельств, в совокупности обусловливающих действие нормы;

· альтернативная – указано несколько вариантов обстоятельств (альтернативных), при которых возможно действие нормы. В этом случае при наступлении одного из них норма является действующей;

Параметрической гипотезой называется гипотеза о значениях параметров распределения или о сравнительной величине параметров двух распределений. Примером параметрической статистической гипотезы является гипотеза оравенстве математических ожиданий двух нормальных совокупностей.

Непараметрическими гипотезами называются гипотезы о виде распределенияслучайной величины.

Нулевой, основной или проверяемой гипотезой называется первоначально выдвинутая гипотеза, которая обозначается Н0 .

Статистическая гипотеза представляет собой некоторое предположение о законе распределения случайной величины или о параметрах этого закона, формулируемое на основе выборки . Примерами статистических гипотез являются предположения: генеральная совокупность распределена по экспоненциальному закону; математические ожидания двух экспоненциально распределенных выборок равны друг другу. В первой из них высказано предположение о виде закона распределения, а во второй – о параметрах двух распределений. Гипотезы, в основе которых нет никаких допущений о конкретном виде закона распределения, называют непараметрическими , в противном случае – параметрическими .

Гипотезу, утверждающую, что различие между сравниваемыми характеристиками отсутствует, а наблюдаемые отклонения объясняются лишь случайными колебаниями в выборках, на основании которых производится сравнение, называют нулевой (основной) гипотезой и обозначают Н 0 . Наряду с основной гипотезой рассматривают и альтернативную (конкурирующую, противоречащую) ей гипотезу Н 1 . И если нулевая гипотеза будет отвергнута, то будет иметь место альтернативная гипотеза.

Различают простые и сложные гипотезы. Гипотезуназывают простой , если она однозначно характеризует параметр распределения случайной величины. Например, если  является параметром экспоненциального распределения, то гипотеза Н 0 о равенстве  = 10–простая гипотеза. Сложной называют гипотезу, которая состоит из конечного или бесконечного множества простых гипотез. Сложная гипотеза Н 0 о неравенстве  > 10 состоит из бесконечного множества простых гипотез Н 0 о равенстве  =b i , где b i – любое число, большее 10. Гипотеза Н 0 о том, что математическое ожидание нормального распределения равно двум при неизвестной дисперсии, тоже является сложной. Сложной гипотезой будет предположение о распределении случайной величины Х по нормальному закону, если не фиксируются конкретные значения математического ожидания и дисперсии.

Проверка гипотезы основывается на вычислении некоторой случайной величины – критерия, точное или приближенное распределение которого известно. Обозначим эту величину через z , ее значение является функцией от элементов выборки z =z (x 1 , x 2 , …, x n ). Процедура проверки гипотезы предписывает каждому значению критерия одно из двух решений – принять или отвергнуть гипотезу. Тем самым все выборочное пространство и соответственно множество значений критерия делятся на два непересекающихся подмножества S 0 и S 1 . Если значение критерия z попадает в область S 0 , то гипотеза принимается, а если в область S 1 , – гипотеза отклоняется. Множество S 0 называется областью принятия гипотезы или областью допустимых значений , а множество S 1 – областью отклонения гипотезы или критической областью . Выбор одной области однозначно определяет и другую область.

Принятие или отклонение гипотезы Н 0 по случайной выборке соответствует истине с некоторой вероятностью и, соответственно, возможны два рода ошибок. Ошибка первого рода возникает с вероятностью  тогда, когда отвергается верная гипотеза Н 0 и принимается конкурирующая гипотеза Н 1 . Ошибка второго рода возникает с вероятностью  в том случае, когда принимается неверная гипотеза Н 0 , в то время как справедлива конкурирующая гипотеза Н 1 . Доверительная вероятность – это вероятность не совершить ошибку первого рода и принять верную гипотезу Н 0 . Вероятность отвергнуть ложную гипотезу Н 0 называется мощностью критерия . Следовательно, при проверке гипотезы возможны четыре варианта исходов, табл. 3.1.

Таблица 3.1.

Например, рассмотрим случай, когда некоторая несмещенная оценка параметра  вычислена по выборке объема n , и эта оценка имеет плотность распределения f (), рис. 3.1.

Рис. 3.1. Области и отклонения гипотезы

Предположим, что истинное значение оцениваемого параметра равно Т . Если рассматривать гипотезу Н 0 о равенстве  =Т , то насколько велико должно быть различие между  и Т , чтобы эту гипотезу отвергнуть. Ответить на данный вопрос можно в статистическом смысле, рассматривая вероятность достижения некоторой заданной разности между  и Т на основе выборочного распределения параметра  .

Целесообразно полагать одинаковыми значения вероятности выхода параметра  за нижний и верхний пределы интервала. Такое допущение во многих случаях позволяет минимизировать доверительный интервал, т.е. повысить мощность критерия проверки. Суммарная вероятность того, что параметр  выйдет за пределы интервала с границами  1– /2 и   /2 , составляет величину  . Эту величину следует выбрать настолько малой, чтобы выход за пределы интервала был маловероятен. Если оценка параметра попала в заданный интервал, то в таком случае нет оснований подвергать сомнению проверяемую гипотезу, следовательно, гипотезу равенства  =Т можно принять. Но если после получения выборки окажется, что оценка выходит за установленные пределы, то в этом случае есть серьезные основания отвергнуть гипотезу Н 0 . Отсюда следует, что вероятность допустить ошибку первого рода равна  (равна уровню значимости критерия).

Если предположить, например, что истинное значение параметра в действительности равно Т +d , то согласно гипотезе Н 0 о равенстве  =Т – вероятность того, что оценка параметра  попадет в область принятия гипотезы, составит  , рис. 3.2.

При заданном объеме выборки вероятность совершения ошибки первого рода можно уменьшить, снижая уровень значимости  . Однако при этом увеличивается вероятность ошибки второго рода  (снижается мощность критерия). Аналогичные рассуждения можно провести для случая, когда истинное значение параметра равно Т d .

Единственный способ уменьшить обе вероятности состоит в увеличении объема выборки (плотность распределения оценки параметра при этом становится более "узкой"). При выборе критической области руководствуются правилом Неймана – Пирсона: следует так выбирать критическую область, чтобы вероятность  была мала, если гипотеза верна, и велика в противном случае. Однако выбор конкретного значения  относительно произволен. Употребительные значения лежат в пределах от 0,001 до 0,2. В целях упрощения ручных расчетов составлены таблицы интервалов с границами  1– /2 и   /2 для типовых значений  и различных способов построения критерия.

При выборе уровня значимости необходимо учитывать мощность критерия при альтернативной гипотезе. Иногда большая мощность критерия оказывается существеннее малого уровня значимости, и его значение выбирают относительно большим, например 0,2. Такой выбор оправдан, если последствия ошибок второго рода более существенны, чем ошибок первого рода. Например, если отвергнуто правильное решение "продолжить работу пользователей с текущими паролями", то ошибка первого рода приведет к некоторой задержке в нормальном функционировании системы, связанной со сменой паролей. Если же принято решения не менять пароли, несмотря на опасность несанкционированного доступа посторонних лиц к информации, то эта ошибка повлечет более серьезные последствия.

В зависимости от сущности проверяемой гипотезы и используемых мер расхождения оценки характеристики от ее теоретического значения применяют различные критерии. К числу наиболее часто применяемых критериев для проверки гипотез о законах распределения относят критерии хи-квадрат Пирсона, Колмогорова, Мизеса, Вилкоксона, о значениях параметров – критерии Фишера, Стьюдента.

25. КРИТИЧЕСКАЯ ОБЛАСТЬ - часть выборочного пространства такая, что попадание в нее наблюденного значения случайной величины, с распределением к-рой связана проверяемая гипотеза, влечет отказ от этой гипотезы

Критическими точками (границами) k кр называют точки, отделяющие критическую область от области принятия гипотезы.
Различают одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области.

Случайная погрешность измерения образуется под влиянием большого числа факторов , сопутствующих процессу измерения. В каждой конкретной ситуации работает свой механизм образования погрешности. Поэтому естественно предположить, что каждой ситуации должен соответствовать свой тип распределения погрешности. Однако во многих случаях имеются возможности еще до проведения измерений сделать некоторые предположения о форме функции распределения, так что после проведения измерений остается только определить значения некоторых параметров, входящих в выражение для предполагаемой функции распределения.

Случайная погрешность характеризует неопределенность наших знаний об истинном значении измеряемой величины, полученных в результате проведенных наблюдений. Согласно К. Шеннону мерой неопределенности ситуации, описываемой случайной величиной X, является энтропия


являющаяся функционалом дифференциальной функции распределения . Можно предположить, что любой процесс измерения формируется таким образом, что неопределенность результата наблюдений оказывается наибольшей в некоторых пределах, определяемых допускаемыми значениями погрешности. Поэтому наиболее вероятными должны быть такие распределения , при которых энтропия обращается в максимум.

Для выявления вида наиболее вероятных распределений рассмотрим несколько наиболее типичных случаев .

1. В классе распределений результатов наблюдений , обладающих определенной зоной рассеивания между значениями х = b и х = а шириной b-а =, найдем такое, которое обращает в максимум энтропию при наличии ограничивающих условий:
, , ,
где - математическое ожидание результатов наблюдений. Решение поставленной задачи находится методом множителей Лагранжа.

Искомая плотность распределения результатов наблюдений описывается выражением

Определим числовые характеристики равномерного распределения. Математическое ожидание случайной погрешности находим по формуле (10):

Дисперсию случайной равномерно распределенной погрешности можно найти по формуле (18):

В силу симметрии распределения относительно математического ожидания коэффициент асимметрии должен равняться нулю:

Для определения эксцесса найдем вначале четвертый момент случайной погрешности:

Поэтому

В заключение найдем веро-ятность попадания случайной погрешности в заданный интервал , равный заштрихованной площади на рис.7

2. В классе распределений результатов наблюдений , обладающих определенной дисперсией , найдем такое, которое обращает в максимум энтропию при наличии ограничений:

, , , .

Решение этой задачи также находится методом множителей Лагранжа. Искомая плотность распределения результатов наблюдений описывается выражением

Распределение, описываемое уравнениями (25) и (26), называется нормальным или распределением Гаусса .

На рис.8 изображены кривые нормального распределения случайных погрешностей для различных значений среднеквадратического отклонения .

Из рисунка видно, что по мере увеличения среднеквадратического отклонения распределение все более и более расплывается, вероятность появления больших значений погрешностей возрастает, а вероятность меньших погрешностей сокращается, т.е. увеличивается рассеивание результатов наблюдений.

Вычислим вероятность попадания результата наблюдения в некоторый заданный интервал :

Заменим переменные:

После чего получим следующее выражение для искомой вероятности:

Интегралы, стоящие в квадратных скобках, не выражаются в элементарных функциях, поэтому их вычисляют с помощью так называемого нормированного нормального распределения с дифференциальной функцией

С помощью функции Ф(z ) вероятность находят как

(29)

При использовании данной формулы следует иметь в виду тождество

Вытекающее непосредственно из определения функции Ф(z ).

Широкое распространение нормального распределения погрешностей в практике измерений объясняется центральной предельной теоремой теории вероятностей, являющейся одной из самых замечательных математических теорем, в разработке которой принимали участие многие крупнейшие математики - Муавр, Лаплас, Гаусс, Чебышев и Ляпунов. Центральная предельная теорема утверждает, что распределение случайных погрешностей будет близко в нормальному всякий раз, когда результаты наблюдения формируются под влиянием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

3. Предположим, что результаты наблюдений распределены нормально, но их среднеквадратическое отклонение является величиной случайной, изменяющейся от опыта к опыту. Такое предположение более осторожное, чем предположение о неизменности в течение всего времени измерений. В этом случае, рассуждая таким же образом, как и прежде, легко найти, что энтропия обращается в максимум, если результаты наблюдений имеют распределение Лапласа с плотностью

(30)

где - математическое ожидание, - среднеквадратическое отклонение результатов наблюдения. Распределением Лапласа следует пользоваться в тех случаях, когда точностные характеристики заранее неизвестны или нестабильны во времени.

Дифференциальная функция распределения случайных погрешностей получается подстановкой и в выражение (30):

Асимметрия распределения равна нулю, поскольку распределение симметрично относительно нуля, а эксцесс в соответствии с формулой (22) составляет

Таким образом, по сравнению с нормальным распределением (Ех = 0) равномерное распределение является более плосковершинным (Ех = -1.2), а распределение Лапласа - более островершинным (Ех = 3).

Формы представления статистических данных.

Статистические данные должны быть представлены так, чтобы ими можно было пользоваться. Существует 3 основных формы представления статистических данных :

Текстовая – включение данных в текст;

Табличная – представление данных в таблицах;

Графическая – выражение данных в виде графиков.

Текстовая форма применяется при малом количестве цифровых данных.

Табличная форма применяется чаще всего, так как является более эффективной формой представления статистических данных. В отличие от математических таблиц, которые по начальным условиям позволяют получить тот или иной результат, статистические таблицы рассказывают языком цифр об изучаемых объектах.

Статистическая таблица – это система строк и столбцов, в которых в определенной последовательности и связи излагается статистическая информация о социально-экономических явлениях.

Различают подлежащее и сказуемое статистической таблицы. В подлежащем указывается характеризуемый объект – либо единицы совокупности, либо группы единиц, либо совокупность в целом. В сказуемом дается характеристика подлежащего, обычно в числовой форме. Обязателен заголовок таблицы, в котором указывается к какой категории и к какому времени относятся данные таблицы.

По характеру подлежащего статистические таблицы подразделяются на простые, групповые и комбинационные. В подлежащем простой таблицы объект изучения не подразделяется на группы, а дается либо перечень всех единиц совокупности, либо указывается совокупность в целом. В подлежащем групповой таблицы объект изучения подразделяется на группы по одному признаку, а в сказуемом указываются число единиц в группах (абсолютное или в процентах) и сводные показатели по группам. В подлежащем комбинационной таблицы совокупность подразделяется на группы не по одному, а по нескольким признакам.

При построении таблиц необходимо руководствоваться следующими общими правилами.

Подлежащее таблицы располагается в левой (реже – верхней) части, а сказуемое – в правой (реже – нижней).

Заголовки столбцов содержат названия показателей и их единицы измерения.

Итоговая строка завершает таблицу и располагается в ее конце, но иногда бывает первой: в этом случае во второй строке делается запись «в том числе», и последующие строки содержат составляющие итоговой строки.

Цифровые данные записываются с одной и той же степенью точности в пределах каждого столбца, при этом разряды чисел располагаются под разрядами, а целая часть отделяется от дробной запятой.

В таблице не должно быть пустых клеток: если данные равны нулю, то ставится знак «–» (прочерк); если данные не известны, то делается запись «сведений нет» или ставится знак «…» (троеточие). Если значение показателя не равно нулю, но первая значащая цифра появляется после принятой степени точности, то делается запись 0,0 (если, скажем, была принята степень точности 0,1).

Иногда статистические таблицы дополняются графиками, когда ставится цель подчеркнуть какую-то особенность данных, провести их сравнение. Графическая форма является самой эффективной формой представления данных с точки зрения их восприятия. С помощью графиков достигается наглядность характеристики структуры, динамики, взаимосвязи явлений, их сравнения.

Для наглядного и компактного представления статистической информации используют статистические таблицы и графики (включая диаграммы, картограммы и картодиаграммы).

Результаты сводки и группировки материалов статистического наблюдения, как правило, оформляются в виде таблиц.

Таблица - наиболее рациональная, наглядная и компактная форма представления статистического материала.

Статистической называется таблица, которая содержит сводную числовую характеристику исследуемой совокупности по одному или нескольким существенным признакам, взаимосвязанным логикой экономического анализа.

Основные элементы статистической таблицы, показанной на рис. 5.1, составляют ее макет:

Рис. 5.1. Статистическая таблица

При построении таблицы числовая информация располагается на пересечении строк и граф. Таким образом, внешне таблица пред­ставляет собой совокупность граф и строк, которые формируют ее

остов. Размер таблицы определяется произведением числа строк на число граф.

Статистическая таблица содержит три вида заголовков: общий, верхние и боковые. Общий заголовок отражает содержание всей таблицы, располагается над ее макетом по центру и является внеш­ним заголовком. Верхние заголовки (заголовки сказуемого) харак­теризуют содержание граф, а боковые (заголовки подлежащего) - содержание строк. Они являются внутренними заголовками.

Остов таблицы, заполненный заголовками, образует ее макет. Если на пересечении граф и строк записать цифры, то получается полная статистическая таблица. Цифровой материал может быть пред­ставлен абсолютными, относительными (индексы цен на продоволь­ственные товары) и средними величинами. В случае необходимости таблицы могут сопровождаться примечанием, используемым с це­лью пояснения заголовков, методики расчета некоторых показате­лей, источников информации и т. д.

По логическому содержанию таблица представляет собой «стати­стическое предложение», основными элементами которого являются подлежащее и сказуемое.

Подлежащее статистической таблицы содержит перечень показа­телей, характеризующийся цифрами. Это могут быть одна или не­сколько совокупностей, отдельные единицы совокупностей (фир­мы, объединения) в порядке их перечня или сгруппированные по каким-либо признакам (отдельные территориальные единицы, вре­менные периоды в хронологических таблицах и т. д.). Обычно под­лежащее таблицы дается в левой части, в наименовании строк.

Сказуемое статистической таблицы образует система показате­лей, которыми характеризуется объект изучения, т. е. подлежащее таблицы. Сказуемое формирует верхние заголовки и составляет со­держание граф с логически последовательным расположением пока­зателей слева направо.

Расположение подлежащего и сказуемого может меняться места­ми, что зависит от выбора исследователя. В зависимости от структу­ры подлежащего и группировки единиц в нем различают статисти­ческие таблицы простые и сложные, а последние в свою очередь подразделяются на групповые и комбинационные.

В простой таблице в подлежащем дается простой перечень ка­ких-либо объектов или территориальных единиц совокупности. Про­стые таблицы бывают монографические и перечневые. Монографи­ческие характеризуют не всю совокупность единиц изучаемого объема, а только одну какую-либо группу из него, выделенную по опреде­ленному, заранее сформулированному признаку. Таким образом, простыми перечневыми таблицами называются таблицы, подлежа­щее которых содержит перечень единиц изучаемой совокупности.

Подлежащее простой таблицы может быть сформировано по следу­ющим принципам: видовому, территориальному (численность населе­ния по странам СНГ); временному и т. д. Простые таблицы не дают возможности выявить социально-экономические типы изучаемых яв­лений, их структуру, а также взаимосвязи и взаимозависимости между характеризующими их признаками. Эти задачи более полно решаются с помощью сложных таблиц: групповых и особенно комбинационных.

Групповыми называются статистические таблицы, подлежащее которых содержит группировку единиц совокупности по одному количественному или атрибутивному признаку. Сказуемое в груп­повых таблицах состоит из показателей, необходимых для характе­ристики подлежащего.

Простейшим видом групповых таблиц являются атрибутивные и вариационные ряды распределения. Групповая таблица может быть более сложной, если в сказуемом приводятся не только число еди­ниц в каждой группе, но и ряд других важных показателей, количе­ственно и качественно характеризующих группы подлежащего. Та­кие таблицы часто используются в целях сопоставления обобщающих показателей по группам, что позволяет делать определенные прак­тические выводы. Групповые таблицы позволяют выявить и оха­рактеризовать социально-экономические типы явлений, их струк­туру в зависимости только от одного признака.

Комбинационными называются статистические таблицы, подле­жащее которых содержит группировку единиц совокупности одно­временно по двум и более признакам: каждая из групп, построенная по одному признаку, разбивается на подгруппы по какому-либо другому признаку и т. д.

Комбинационные таблицы позволяют характеризовать типичес­кие группы, выделенные по нескольким признакам, и связь между последними. Последовательность разбиения единиц совокупности на однородные группы по признакам определяется либо важностью одного из них в их комбинации, либо порядком их изучения.

Сложная разработка сказуемого предполагает деление признака, формирующего его, на подгруппы. При этом получается более пол­ная и подробная характеристика объекта. В таком случае каждая группа предприятий или каждое из них в отдельности могут быть охарактеризованы различной комбинацией признаков, формирую­щих сказуемое.

ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СТАТИСТИЧЕСКИХ ДАННЫХ, метод наглядного изображения и обобщения данных о социально-экономических явлениях посредством геометрических образов, рисунков или схематических географических карт и пояснительных надписей к ним. Графическое представление статистических данных отчётливо и наглядно отображает взаимосвязь между явлениями и процессами общественной жизни, основные тенденции их развития, степень их распространения в пространстве; позволяет увидеть как всю совокупность явлений в целом, так и отдельные его части.

Для графического представления статистических данных используются разнообразные виды статистических графиков. Каждый график состоит из графического образа и вспомогательных элементов. К ним относятся: экспликация графика, пространственные ориентиры, масштабные ориентиры, поле графика. Вспомогательные элементы делают возможным чтение графика, его понимание и использование. Графики можно классифицировать по ряду признаков: в зависимости от формы графического образа они могут быть точечными, линейными, плоскостными, пространственными и фигурными. По способу построения графики делятся на диаграммы и статистические карты.

Наиболее распространённый способ графических изображений - диаграмма. Это чертёж, на котором статистические данные представлены как геометрические фигуры или знаки, а территория, к которой относятся эти данные, указана только словесно. Если диаграмма наложена на географическую карту или на план территории, к которой относятся статистические данные, то график называется картодиаграммой. Если же статистические данные изображены путём штриховки или раскраски соответствующей территории на географической карте или плане, то график называется картограммой.

Для сравнения одноимённых статистических данных, характеризующих разные объекты или территории, могут быть использованы различные виды диаграмм. Наиболее наглядны столбиковые диаграммы, на которых статистические данные изображаются в виде вытянутых по вертикали прямоугольников. Их наглядность достигается сравнением высоты столбиков (рис. 1).

Если базовая линия расположена вертикально, а столбики горизонтально, то диаграмма называется полосовой (ленточной). На рисунке 2 приведена полосовая диаграмма сравнения, характеризующая территорию земного шара.

Диаграммы, предназначенные для популяризации, иногда строятся в виде стандартных фигур - рисунков, характерных для изображаемых статистических данных, что делает диаграмму более выразительной, привлекает к ней внимание. Такие диаграммы называются фигурными или изобразительными (рис. 3).

Большую группу показательных графиков составляют структурные диаграммы. Метод графического изображения структуры статистических данных заключается в составлении структурных круговых или секторных диаграмм (рис. 4).

Для изображения и анализа развития явлений во времени строятся диаграммы динамики: столбиковые, ленточные, квадратные, круговые, линейные, радиальные и др. Выбор вида диаграммы зависит от особенностей исходных данных, цели исследования. Например, если имеется ряд динамики с несколько неравноотстоящими уровнями во времени (1913, 1940, 1950, 1980, 2000, 2005), то используют столбиковые, квадратные или круговые диаграммы. Они зрительно впечатляют, хорошо запоминаются, но не пригодны для изображения большого числа уровней. Если число уровней в ряду динамики велико, то применяются линейные диаграммы, которые воспроизводят процесс развития в виде непрерывной ломаной линии (рис. 5).

Нередко на одном линейном графике приводится несколько кривых, дающих сравнительную характеристику динамики различных показателей или одного и того же показателя в разных странах (рис. 6).

Для отображения зависимости одного показателя от другого строится диаграмма взаимосвязи. Один показатель принимается за Х, а другой за Y (т. е. функцию от Х). Строится прямоугольная система координат с масштабами для показателей, и в ней вычерчивается график (рис. 7).

Развитие вычислительной техники и прикладного программного обеспечения сделало возможным создание географических информационных систем (ГИС), представляющих качественно новый этап в графическом представлении информации. ГИС обеспечивают сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных; включают большое количество графических и тематических баз данных в соединении с модельными и расчётными функциями, позволяющими представлять информацию в пространственном (картографическом) виде, получать в различном масштабе многослойные электронные карты региона. По территориальному охвату различают глобальные, субконтинентальные, государственные, региональные и локальные виды ГИС. Предметная ориентация ГИС определяется решаемыми с её помощью задачами, среди которых могут быть инвентаризация ресурсов, анализ, оценка, мониторинг, управление и планирование.

Лит.: Герчук Я. П. Графические методы в статистике. М., 1968; Теория статистики / Под редакцией Р. А. Шмойловой. 4-е изд. М., 2005. С. 150-83.

УО ФПБ МИТСО

Кафедра логистики

СУРС №1

по дисциплине Статистика на тему: «Методы и формы представления статистической информации»

Выполнила

Студентка 2 курса

Ф-та МЭОиМ д/о

группы 916

Верина Е. А.

Проверил преподаватель

Бондарь С.В.

Минск, 2010

Трактовка графического метода представления статистических данных как особой знаковой системы - искусственного знакового языка - связана с развитием семиотики, науки о знаках и знаковых системах.

Статистический график - это чертеж, на котором статистические совокупности, характеризуемые определенными показателями, описываются с помощью условных геометрических образов или знаков. Представление данных таблицы в виде графика производит более сильное впечатление, чем цифры, позволяет лучше осмыслить результаты статистического наблюдения, правильно их истолковать, значительно облегчает понимание статистического материала, делает его наглядным и доступным. Это, однако, вовсе не означает, что графики имеют лишь иллюстративное значение. Они дают новое знание о предмете исследования, являясь методом обобщения исходной информации.

При построении графического изображения следует соблюдать ряд требований. Прежде всего график должен быть достаточно наглядным, так как весь смысл графического изображения как метода анализа в том и состоит, чтобы наглядно изобразить статистические показатели. Кроме того, график должен быть выразительным, доходчивым и понятным.

График состоит из графического образа и вспомогательных элементов. Графический образ - это совокупность линий, фигур, точек, которыми изображены статистические данные. Диаметрические знаки, рисунки или образы, применяемые в статистических графиках, многообразны. Это точки, отрезки прямых линий, знаки в виде фигур различной формы, штриховки или окраски (круги, квадраты, прямоугольники и др.). Эти знаки применяются для сравнения статистических величин, изображающих абсолютные и относительные размеры сравниваемых совокупностей. Сравнение на графике производится по некоторым измерениям: площади или длине одной из сторон фигуры, местонахождению точек, их густоте, густоте штриховке, интенсивности или цвету окраски.

Вспомогательные элементы включают общий заголовок, условные обозначения, оси координат, шкалы с масштабами и числовую сетку.

Словесные пояснения (экспликация графика) помещенных на графике геометрических образов, различных по их конфигурации, штриховке или цвету, позволяют мысленно перейти от геометриче­ских образов к явлениям и процессам, изображенным на графике.

В статистических графиках чаще всего применяется система прямоугольных координат, но есть и графики, построенные по принципу полярных координат (круговые графики).

Когда график строится в прямоугольных координатах, на горизонтальной оси абсцисс и вертикальной оси ординат в определенном порядке располагаются характеристики статистических признаков изображаемых явлений или процессов, а в поле графика размещаются геометрические знаки, составляющие сам график. Поле графика - это пространство, в котором располагаются геометрические знаки, образующие график.

Признаки, располагаемые на осях координат, могут быть качественными и количественными.

Одна из важных задач статистического графика - это его композиция: отбор статистического материала, выбор способа изображения, т.е. формата графика. Размер графика должен соответствовать его назначению.

В заголовке (названий) графика определяется задача, которая решается при помощи графика, дается характеристика места и времени, к которому относится график.

Надписи вдоль масштабных шкал указывают, в каких единицах измеряются признаки. Цифры значений каждого параметра проставляются у пограничных отметок масштабных шкал.

Масштабная шкала - линия (на статистическом графике обычно прямая) , несущая на себе масштабные отметки с их числовыми обозначениями. Лучше делать эти обозначения только на отметках, соответствующих круглым числам: в таком случае промежуточные отметки читают путем отсчета от ближайшего числа, обозначенного на масштабной шкале. Согласно масштабным отметкам на диаграммном поле откладывают размеры изображаемых явлений или процесс. Масштабные отметки располагаются на шкале равномерно (шкала равномерная, арифметическая) или неравномерная (шкала функциональная, шкала логарифмическая).

Шкала функциональная - масштабная шкала, где числовые значения помеченных точек выражают значения аргумента, а расположение этих точек соответствует равномерно распределенным значениям некоторой функции того же аргумента. Из шкал функциональных в статистических графиках применяют главным образом шкалу логарифмическую. При этом, если рассматриваются две величины, то такая шкала может быть применима к обеим или только к одной из них (“полулогарифмический” график или масштаб). Расстояния между точками, нанесенными по числовым отметкам логарифмической шкалы, отвечают разности логарифмов соответствующих чисел и, следовательно, характеризуют соотношения между числами.

Классификация видов графиков.

Существует множество видов графических изображений. Их классификация основана на ряде признаков:

а) способ построения графического образа;

б) геометрические знаки, изображающие статистические показатели и отношения;

в) задачи, решаемые с помощью графического изображения.

Статистические графики по форме графического образа:

1. Линейные: статистические кривые.

2. Плоскостные: столбиковые, полосовые, квадратные, круговые, секторные, фигурные, точечные, фоновые.

3. Объемные: поверхности распределения.

Статистические графики по способу построения и задачам изображения:

1. Диаграммы: диаграммы сравнения, диаграммы динамики, структурные диаграммы.

2. Статистические карты: картограммы, картодиаграммы.

По способу построения статистические графики делятся на диаграммы и статистические карты. Диаграммы - наиболее распространенный способ графических изображений. Это графики количественных отношений. Виды и способы их построения разнообразны. Диаграммы применяются для наглядного сопоставления в различных аспектах (пространственном, временном и др.) независимых друг от друга величин: территорий, населения и т. д. При этом сравнение исследуемых совокупностей производится по какому-либо существенному варьирующему признаку. Статистические карты - графики количественного распределения по поверхности. По своей основной цели они близко примыкают к диаграммам и специфичны лишь в том отношении, что представляют собой условные изображения статистических данных на контурной географической карте, т. е. показывают пространственное размещение или пространственную распространенность статистических данных. Геометрические знаки, как было сказано выше, - это либо точки, либо линии или плоскости, либо геометрические тела. В соответствии с этим различают графики точечные, линейные, плоскостные и пространственные (объемные).

При построении точечных диаграмм в качестве графических образов применяются совокупности точек; при построении линейных - линии. Основной принцип построения всех плоскостных диаграмм сводится к тому, что статистические величины изображаются в виде геометрических фигур и, в свою очередь, подразделяются на столбиковые, полосовые, круговые, квадратные и фигурные.

Статистические карты по графическому образу делятся на картограммы и картодиаграммы.

В зависимости от круга решаемых задач выделяются диаграммы сравнения, структурные диаграммы и диаграммы динамики.

Наиболее употребительными графиками для изображения вариационных рядов, т. е. соотношений между значениями признака и соответствующими частотами или относительными частотами, являются полигон, гистограмма и кумулята.

Полигон чаще всего используют для изображения дискретных рядов. Для построения полигона в прямоугольной системе координат на оси абсцисс в произвольно выбранном масштабе откладывают значения аргумента, т. е. варианты, а на оси ординат также в произвольно выбранном масштабе - значения частот или относительных частот. Масштаб выбирают такой, чтобы была обеспечена необходимая наглядность, и чтобы рисунок имел желательный размер. Далее в этой системе координат строят точки, координатами которых являются пары соответствующих чисел из вариационного ряда. Полученные точки последовательно соединяют отрезками прямой. Крайнюю "левую" точку соединяют с точкой оси абсцисс, абсцисса которой находится слева от рассматриваемой точки на таком же расстоянии, как абсцисса ближайшей справа точки. Аналогично крайнюю "правую" точку также соединяют с точкой оси абсцисс.

Учебные достижения учащихся некоторого класса по математике характеризуются данными, представленными в таблице.

Построить полигон частот.

Статистический график - это чертеж, на котором статистические совокупности, характеризуемые определенными показателями, описываются с помощью условных геометрических образов или знаков. В статистических графиках чаще всего применяется система прямоугольных координат, но есть и графики, построенные по принципу полярных координат (круговые графики).

Классификация видов графиков:

а) способ построения графического образа;

б) геометрические знаки, изображающие статистические показатели и отношения;

в) задачи, решаемые с помощью графического изображения.

Статистические графики по форме графического образа:

1. Линейные: статистические кривые.

2. Плоскостные: столбиковые, полосовые, квадратные, круговые, секторные, фигурные, точечные, фоновые.

3. Объемные: поверхности распределения.

Статистические графики по способу построения и задачам изображения:

1. Диаграммы: диаграммы сравнения, диаграммы динамики, структурные диаграммы (наиболее распространенный способ графических изображений. Это графики количественных отношений).

2. Статистические карты: картограммы, картодиаграммы (графики количественного распределения по поверхности. По своей основной цели они близко примыкают к диаграммам и специфичны лишь в том отношении, что представляют собой условные изображения статистических данных на контурной географической карте, т. е. показывают пространственное размещение или пространственную распространенность статистических данных)

10/ Абсолютные показатели

Абсолютные показатели отражают физические размеры изучаемых статистикой процессов и явлений, а именно их массу, площадь, объем, протяженность, временные характеристики. Всегда являются именованными числами. Выражаются в натуральных, стоимостных или трудовых единицах измерения.

Натуральные единицы – тонны, километры, литры, баррели, штуки.

Условно-натуральные единицы используются когда какой-либо продукт имеет несколько разновидностей и общий объем можно определить только исходя из общего для всех разновидностей потребительского свойства. Перевод в условные единицы осуществляется на основе специальных коэффициентов, рассчитываемых как отношение потребительских свойств отдельных разновидностей продукта к эталонному значению.

Стоимостные единицы измерения дают денежную оценку социально-экономическим явлениям (стоимость ВВП). Трудовые единицы измерения позволяют учитывать общие затраты труда на предприятии и трудоемкость отдельных операций технологического процесса (чел-дни, чел-часы).

Индивидуальные абсолютные показатели получают непосредственно в процессе статистического наблюдения как результат интересующего количественного признака.

Сводные объемные абсолютные показатели получают в результате сводки и группировки индивидуальных значений.

11/ Относительные показатели

Относительный показатель – результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических явлений.

Без относительных показателей невозможно измерить интенсивность развития изучаемого явления во времени, оценить уровень развития одного явления на фоне других, взаимосвязанных с ним явлений, осуществить пространственно-территориальные сравнения.

При расчете относительного показателя абсолютный показатель, находящийся в числителе получаемого отношения, называется текущим или сравниваемым , а показатель, находящийся в знаменателе, называется базой сравнения или основой .

Относительные показатели могут выражаться в коэффициентах, процентах, промилле, продецимилле, а могут быть именованными значениями. Проценты используются в тех случаях, когда сравниваемый абсолютный показатель превосходит базисный не более, чем в 2-3 раза. Если же превосходство больше, то используется коэффициент.

Выделяют следующие виды относительных показателей .

    Относительный показатель динамики (ОПД) – отношение уровня исследуемого процесса или явления за данный период времени и уровня этого же явления в прошлом. ОПД измеряется в процентах, либо выражается в виде коэффициента.

    Данная величина показывает во сколько раз текущий уровень больше базисного или какую долю от базисного составляет. Если ОПД выражен кратным отношением, то он представляет собой коэффициент роста. При умножении этого коэффициента на 100 получают темп роста.

    Относительный показатель плана (ОПП) – отношение планируемого уровня показателя к уже достигнутому показателю в прошлом. ОПП, также как и ОПД, выражается в процентах или в виде коэффициента.

    Относительный показатель реализации плана (ОПРП) – отношение фактически достигнутого уровня к запланированному уровню показателя. ОПРП также выражается в процентах или в виде коэффициента.

    Относительный показатель структуры (ОПС) – соотношение структурных частей изучаемого объекта и определяется отношением показателя, характеризующего часть совокупности к показателю, характеризующему всю совокупность. ОПС выражается в долях единицах или в процентах.

    Относительный показатель координации (ОПК) – соотношение разных частей, принадлежащих одному объекту.

    Относительный показатель сравнения (ОПСр) – соотношение одноименных абсолютных показателей, характеризующих разные объекты.

    Относительный показатель интенсивности (ОПИИ) характеризует степень распространения изучаемого процесса или явления в присущей ему среде и определяется отношением показателя, характеризующего явление к показателю, характеризующему среду распространения этого явления. ОПИ измеряются в процентах, промилле, продецимилле. Данный показатель исчисляется, когда абсолютная величина оказывается недостаточной для формулировки обоснованных выводов о масштабах явления. Разновидностью ОПИИ являются показатели уровня экономического развития , характеризующие производство ВВП на душу населения, товарооборот на душу населения и т.д. Показатели уровня экономического развития являются именованными величинами и измеряются в рублях на душу и т.д.