Общие черты митоза и мейоза. Отличия митоза от мейоза. Сравнительная характеристика митоза и мейоза

Развитие и рост живых организмов невозможен без процесса деления клеток. В природе существует несколько видов и способов деления. В данной статье мы кратко и понятно расскажем о митозе и мейозе, разъясним основное значение этих процессов, познакомим с тем, чем отличаются они, а чем схожи.

Митоз

Процесс непрямого деления, или митоз, чаще всего встречается в природе. На нём основывается деление всех существующих неполовых клеток, а именно мышечных, нервных, эпителиальных и прочих.

Состоит митоз из четырёх фаз: профазы, метафазы, анафазы и телофазы. Основная роль данного процесса - равномерное распределение генетического кода от родительской клетки к двум дочерним. При этом клетки нового поколения один к одному схожи с материнскими.

Рис. 1. Схема митоза

Время между процессами деления называются интерфазой . Чаще всего интерфаза гораздо длиннее митоза. Для этого периода характерны:

  • синтез белка и молекулы АТФ в клетке;
  • удваивание хромосом и образование двух сестринских хроматид;
  • увеличение числа органоидов в цитоплазме.

Мейоз

Деление половых клеток называется мейозом, оно сопровождается уменьшением числа хромосом вдвое. Особенность данного процесса состоит в том, что проходит он в два этапа, которые непрерывно следуют друг за другом.

ТОП-4 статьи которые читают вместе с этой

Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна.

Рис. 2. Схема мейоза

Биологическим значением мейоза является образование чистых гамет, которые содержат гаплоидный, другими словами одинарный, набор хромосом. Диплоидность восстанавливается после оплодотворения, то есть слияния материнской и отцовской клетки. В результате слияния двух гамет образуется зигота с полным набором хромосом.

Уменьшение числа хромосом при мейозе очень важно, так как в противном случае при каждом делении число хромосом увеличивалось бы. Благодаря редукционному делению поддерживается постоянное число хромосом.

Сравнительная характеристика

Отличие митоза и мейоза состоит в продолжительности фаз и происходящих в них процессах. Ниже предлагаем вам таблицу «Митоз и мейоз», где указаны основные различия двух способов деления. Фазы мейоза такие же, как и у митоза. Подробнее узнать о сходствах и различиях двух процессов вы сможете в сравнительной характеристике.

Фазы

Митоз

Мейоз

Первое деление

Второе деление

Интерфаза

Набор хромосом материнской клетки диплоидный. Синтезируется белок, АТФ и органические вещества. Хромосомы удваиваются, образуются две хроматиды, соединённые центромерой.

Диплоидный набор хромосом. Происходят те же действия, что и при митозе. Отличием является продолжительность, особенно при образовании яйцеклеток.

Гаплоидный набор хромосом. Синтез отсутствует.

Непродолжительная фаза. Растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Занимает больше времени, чем при митозе. Также исчезают ядерная оболочка и ядрышко, формируется веретено деления. Помимо этого наблюдается процесс конъюгации (сближение и слияние гомологичных хромосом). При этом происходит кроссинговер - обмен генетической информации на некоторых участках. После хромосомы расходятся.

По продолжительности - короткая фаза. Процессы такие же, как и при митозе, только с гаплоидными хромосомами.

Метафаза

Наблюдается спирализация и расположение хромосом в экваториальной части веретена.

Аналогично митозу

Тоже, что и при митозе, только с гаплоидным набором.

Центромеры делятся на две самостоятельные хромосомы, которые расходятся к разным полюсам.

Деление центромер не происходит. К полюсам отходит одна хромосома, состоящая из двух хроматид.

Аналогично митозу, только с гаплоидным набором.

Телофаза

Цитоплазма делится на две одинаковые дочерние клетки с диплоидным набором, образуются ядерные мембраны с ядрышками. Веретено деления исчезает.

По длительности непродолжительная фаза. Гомологичные хромосомы располагаются в разных клетках с гаплоидным набором. Цитоплазма делится не во всех случаях.

Цитоплазма делится. Образуется четыре гаплоидные клетки.

Рис. 3. Сравнительная схема митоза и мейоза

Что мы узнали?

В природе деление клеток отличается в зависимости от их назначения. Так, например, неполовые клетки делятся путём митоза, а половые - мейоза. Эти процессы имеют схожие схемы деления на некоторых этапах. Главным отличием является наличие числа хромосом у образованного нового поколения клеток. Так при митозе у новообразованного поколения диплоидный набор, а при мейозе гаплоидный набор хромосом. Время протекания фаз деления также отличаются. Огромную роль в жизнедеятельности организмов играют оба способа деления. Без митоза не проходит ни одно обновление старых клеток, репродукция тканей и органов. Мейоз помогает поддерживать постоянное количество хромосом в новообразованном организме при размножении.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 3469.

Сходства:

    для митоза и мейоза характерны одинаковые фазы

    в интерфазе происходит удвоение хромосом и ДНК

    характерны для всех живых организмов, кроме бактерий

Отличия:

    митоз включает одно деление клетки, мейоз – два деления (редукционное и уравнительное)

    в результате митоза образуются соматические клетки, а в результате мейоза формируются гаметы и споры

    в митозе ДНК удваивается перед каждым делением клетки в интерфазе, в мейозе ДНК удваивается один раз: перед первым делением в интерфазе

    в митозе отсутствуют конъюгация и кроссинговер, а в мейозе осуществляются процессы конъюгации и кроссинговера

    в метафазе митоза хромосомы выстраиваются в один слой по экватору клетки и содержат по 2 хроматиды каждая. В мейозе в метафазе 1 хромосомы выстраиваются по экватору клетки в 2 слоя и состоят из 4 хроматид каждая

    в анафазе митоза расходятся к полюсам хроматиды, а в анафазе 1 мейоза расходятся к полюсам хромосомы

    в митозе из одной материнской образуются 2 дочерние клетки (2n с), а в мейозе из одной материнской образуются 4 дочерние клетки (n c)

Решение типовых задач

Задача 1. Какой набор хромосом и сколько хроматид будет содержаться в клетке к концу интерфазы, если в деление вступает клетка с диплоидным набором хромосом? (набор хромосом обозначается n, а число хроматид – с).

Решение . В деление вступает клетка 2n c, т. к. все хроматиды идентичные, парные, но неудвоенные. В интерфазе, перед митотическим делением происходит их удвоение. Поэтому набор хромосом и количество хроматид составят 2n2c.

Задача 2. Диплоидный набор клетки составляет 8 хромосом. Сколько хроматид направляется к каждому полюсу в анафазе первого и второго мейотического деления?

Решение. Перед первым делением в интерфазе хромосомы (хроматиды) удваиваются, и количество хроматид будет равно 16. Это же количество сохранится в профазе -1 и метафазе-1. В анафазе первого мейотического деления к каждому полюсу отойдут по 8 хроматид. В анафазе второго мейотического деления к каждому полюсу направляется 4 хроматиды.

Задачи с ответами

    Для организма с кариотипом 18 хромосом в метафазе -II мейоза количество хромосом и количество хроматид в клетке соответственно составляет. Ответ : 9 и 18.

    Для организма (n=23) в метафазе-II мейоза количество хромосом и хроматид в клетке соответственно составляет. Ответ : 23 и 46.

    Какое количество яйцеклеток и направительных телец может образоваться у животного из 40 ооцитов первого порядка? Ответ: 40 и 120.

    Для организма с кариотипом 18 хромосом в анафазе-1 мейоза количество хромосом и количество хроматид, направляющихся к разным полюсам, соответственно составляет: а) 9 и 18; б) 18 и 36; в) 18 и 9.

    Число хромосом n, число хроматид – с. После первого деления мейоза диплоидной клетки хромосомный набор в дочерних клетках составляет? Ответ : 1n2c.

Задачи для самостоятельного решения

    Диплоидный набор клетки составляет 32 хромосомы. Сколько хроматид направляется к каждому полюсу в анафазе второго мейотического деления.

    Диплоидный набор клетки составляет 28 хромосом. Сколько хроматид направляется к каждому полюсу в анафазе первого мейотического деления.

    В клетках пыльцы вишни садовой 16 хромосом. Сколько хроматид в клетках вишни садовой в метафазе -1 и метафазе-2 мейоза.

Гаметогенез – процесс образования и развития гамет. Гамета – половая гаплоидная клетка, которая обеспечивает передачу наследственной информации. Выделяют два типа гаметогенеза: сперматогенез и овогенез.

Сперматогенез – процесс образования мужских гамет – сперматозоидов. Процесс сперматогенеза осуществляется в мужских половых гонадах из сперматогониев – диплоидных клеток семенника. Он подразделяется на 4 периода:

    размножение (митоз);

    рост (соответствует интерфазе, когда клетки увеличиваются в размерах, и происходит репликация ДНК);

    созревание (мейоз – два деления);

    формирование сперматозоидов.

Схема процесса сперматогенеза (рис. 29)

    сперматогонии делятся митозом на 2 дочерние клетки – сперматоциты первого порядка;

    сперматоциты первого порядка делятся мейозом (первое деление) на 2 дочерние клетки – сперматоциты 2 порядка

    сперматоциты 2-го порядка вступают во второе деление мейоза, в результате которого образуются 4 гаплоидные сперматиды

    сперматиды после периода формирования превращаются в зрелые сперматозоиды

Половые клетки развиваются в половых железах, где различают три зоны: размножения, роста, созревания половых клеток. Зона размножения находится по периферии половой железы. Здесь находятся первичные половые клетки, которые размножаются путем митоза. Затем первичные половые клетки попадают в зону роста, где они растут и достигают морфологической зрелости. Далее половые клетки переходят в зону созревания, где проходят два деления мейоза (редукционное и митоз мейоза, или уравнительное).

В семеннике выделяют три зоны развития половых клеток:

    размножения сперматогониев, расположенная по периферии семенника;

  1. созревания (двух делений мейоза).

Рис . 29 . Схема сперматогенеза

Сперматозоиды – мелкие подвижные клетки. В них выделяют головку, шейку и хвост (рис. 30). В передней части головки находится акросома, по форме пузырек, в котором содержится фермент гиалуронидаза, обладающий способностью растворять оболочки яйцеклетки в процессе оплодотворения. Большая часть головки сперматозоида занята ядром, а цитоплазма располагается только по периферии. В шейке расположены центриоли и митохондрии. При оплодотворении в яйцеклетке оказывается только ядро и центриоли сперматозоида, а другие органеллы не попадают в яйцеклетку. Митохондрии, содержащиеся в шейке, вырабатывают энергию для движения сперматозоида.

Рис . 30. Строение сперматозоида

Оогенез – процесс образования женских половых клеток – яйцеклеток из оогониев – диплоидных клеток яичника. Он подразделяется на 4 периода:

    размножение (митоз);

    рост (в интерфазе происходит рост клеток и репликация ДНК);

    созревание (мейоз);

    формирование яйцеклеток

Схема процесса оогенеза (рис. 31)

    В зоне размножения в яичнике находятся оогонии первичные половые клетки , делящиеся митозом.

    Отдельные оогонии вступают в период роста, при этом клетки увеличиваются, и образуются ооциты первого порядка . Зрелые ооциты первого порядка (граафовы пузырьки) подходят к поверхности яичника, при этом стенка яичника разрывается, и ооцит первого порядка попадает в маточную трубу. Происходит захватывание ооцита бахромками маточной трубы.

3. Далее ооциты первого порядка вступают в период созревания и претерпевают мейоз. Из ооцита первого порядка в результате первого деления мейоза образуются ооцит второго порядка и первое полярное (направительное) тельце.

4. Ооциты второго порядка вступают во второе мейотическое деление. В результате второго деления формируется одна зрелая яйцеклетка (крупная клетка) и 3 полярных тельца, которые рассасываются и служат питательной средой для яйцеклетки. Таким образом, период созревания, два деления мейоза, происходят в маточной трубе.

В ходе оогенеза, как и сперматогенеза, наблюдается процесс дифференцировки клеток, приводящий к образованию гамет.

Рис. 31 . Схема оогенеза

Яйцеклетка – неподвижная клетка, крупная (размеры от 100 мкм до 1 см), которая имеет несколько оболочек, состоящих из гликопротеидов, содержит большое количество цитоплазмы, питательных веществ и ядро, митохондрии, рибосомы (рис. 32). В цитоплазме яйцеклетки содержатся митохондрии, где имеются кольцевые ДНК, через которые передается генетическая информация. Поэтому цитоплазма яйцеклетки обладает митохондриальной наследственностью. Яйцеклетка содержит все органеллы, характерные для эукариотической клетки.

Рис . 32 . Строение яйцеклетки

Оплодотворение – слияние зрелых гамет – яйцеклетки и сперматозоида, содержащих гаплоидный набор хромосом, с образованием зиготы (2n), из которой развивается многоклеточный организм.

Процесс оплодотворения включает 2 этапа (рис. 33):

    проникновение головки сперматозоида в яйцеклетку

    слияние гаплоидных ядер обоих гамет и образование зиготы

Зигота – клетка, образующаяся в результате слияния гамет разного пола.

Рис . 33 . Стадии оплодотворения яйцеклетки и начала деления зиготы у животных: 1 – сперматозоид, содержащий две хромосомы, прикрепляется к поверхности яйцеклетки; 2 – сперматозоид проник в яйцеклетку; 3 – слияние ядер сперматозоида и яйцеклетки и формирование в зиготе диплоидного числа хромосом; 4 – удвоение хромосом; 5 – метафаза первого деления.

15. Выберите пару из перечисленных триплетов нуклеотидов, которые не кодируют аминокислоту, а служат сигналом о прекращении синтеза полипептидной цепи в рибосоме: а) УАГ, ГАГ; б) УАА, УГА; в) ААГ, УГА.

16. Как называется свойство генетического кода, свидетельствующее о том, что он одинаков у организмов, стоящих на разных уровнях развития: а) неперекрываемость; б) дискретность; в) универсальность; г) однозначность.

27. Первая закономерность правила Чаргаффа:

а) А=Г; б) А=Т; в) А=Ц.

28. Вторая закономерность правила Чаргаффа: а) А+Г=Т+Ц; б) А+Т=Г+Ц; в) А+У=Г+Ц.

29. Транскрибируемый участок цепи ДНК, кодирующий полипептид, имеет следующую последовательность нуклеотидов: ТТТЦГАГЦАААА. Укажите антикодоны т-РНК, принимающие участие в биосинтезе данного полипептида: а) АААГЦУЦГУУУУ; б) ТТТЦГАГЦАААА; в) АААГЦТЦГТТТТ; г ) УУУЦГАГЦАААА.

30. Диплоидный набор клетки составляет 64 хромосомы. Сколько хроматид направляется к каждому полюсу в анафазе второго мейотического деления? а) 8; б) 16; в) 32; г) 64.

31. Отметьте признаки, характерные для и-РНК: а) одна полинуклеотидная цепь; б) две полинуклеотидные цепи; в) содержит урацил; г) содержит тимин; д) содержит рибозу; е) содержит дезоксиоибозу.

32. Сколько адениловых нуклеотидов содержится во фрагменте молекулы ДНК, если в нем обнаружено 50 цитидиловых нуклеотидов, что составляет 20 % от общего количества нуклеотидов в данном фрагменте ДНК? а) 50; б) 75; в) 100.

Все живое имеет клеточное строение. Клетки живут: растут, развиваются и делятся. Их деление может происходить различными способами: в процессе митоза или мейоза. Оба этих способа имеют одинаковые фазы деления, предваряя эти процессы, происходят спирализация хромосом и самостоятельное удвоение в них молекул ДНК. Рассмотрим, в чем заключается отличие митоза от мейоза.

Митоз является универсальным способом непрямого деления клеток, имеющих ядро, то есть клеток животных, растений, грибов. Слово «митоз» произошло от греческого «митос», что означает «нить». Его еще называют вегетативным способом размножения или клонированием.

Мейоз – это также способ деления аналогичных клеток, но число хромосом в ходе мейоза уменьшается в два раза. Основой происхождения названия «мейоз» стало греческое слово «меёсис», то есть «уменьшение».

Процесс деления при митозе и мейозе

В процессе митоза каждая хромосома расщепляется на две дочерние и распределяется по двум вновь образовавшимся клеткам. Жизнь образовавшихся клеток может развиваться по-разному: обе могут продолжать деление, делится дальше только одна клетка, в то время, как другая теряет такую способность, обе клетки утрачивают способность делиться.

Мейоз состоит из двух делений. В первом делении число хромосом становится меньше в два раза, из диплоидной клетки получаются две гаплоидные, при этом в каждой хромосоме имеется по две хроматиды. Во втором делении число хромосом не уменьшается, лишь образуется четыре клетки с хромосомами, которые содержат по одной хроматиде.

Конъюгация

В процессе мейоза в первом делении происходит слияние гомологичных хромосом, при митозе любые виды спаривания отсутствуют.

Выстраивание

В процессе митоза удвоенные хромосомы выстраиваются по экватору по раздельности, в то время как при мейозе аналогичное выстраивание происходит парами.

Итог процесса деления

В результате митоза происходит образование двух соматических диплоидных клеток. Важнейшим аспектом этого процесса является то, что наследственные факторы в ходе деления не изменяются.

Итогом мейоза является появление четырех половых гаплоидных клеток, наследственность которых изменена.

Размножение

Мейоз происходит в созревающих половых клетках и является основой полового размножения.

Митоз является основой бесполого размножения соматических клеток, причем это единственный способ их самовосстановления.

Биологическое значение

В процессе мейоза поддерживается постоянное число хромосом и кроме того происходит появление новых соединений наследственных задатков в хромосомах.

При митозе происходит удвоение хромосом в ходе их продольного расщепления, которые равномерно распределяются по дочерним клеткам. Объем и качество исходной информации не меняется, и сохраняется в полной мере.

Митоз является основой индивидуального развития всех многоклеточных организмов.

Выводы сайт

  1. Митоз и мейоз – это способы деления клеток, содержащих в своем составе ядро.
  2. Митоз происходит в соматических клетках, мейоз – в половых.
  3. При митозе происходит одно деление клетки, мейоз предполагает деление в две стадии.
  4. В результате мейоза происходит уменьшение числа хромосом в 2 раза, в процессе митоза – сохранение исходного числа хромосом в дочерних клетках.

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки -зиготы. Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр.

В профазе мейоза I происходит постепеннаяспирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр).

В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp.

В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.Отличие мейоза 1 от мейоза 2:

1. Первому делению предшествует интерфаза с редупликацией хромосом, при втором делении редупликации генетического материала нет, то есть отсутствует синтетическая стадия.

2. Профаза первого деления длительная.

3. В первом делении происходит конъюгация хромосом и
кроссинговер.

4. В первом делении к полюсам расходятся гомологичные хромосомы (биваленты, состоящие из пары хроматид), а во втором – хроматиды.

Отличия мейоза от митоза:

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двухроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

5. После митоза получается две клетки, а после мейоза – четыре.

6. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

7. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

8. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом.

23. Размножение, как основное свойство живого. Бесполое и половое размножение. Формы бесполого и полового размножения. Определение, сущность, биологическое значение.

Размножение - это свойство воспроизведения себе подобных, обеспечивающие непрерывность и преемственность жизни. Различают два способа размножения: бесполый и половой.

Бесполое размножение – различные формы размножения организмов, при которых новый организм возникает из соматических клеток одного родителя, потомки являются точной копией его.

Формы бесполого размножения у одноклеточных .

1. Деление надвое (митозом) - из одной материнской клетки образуются две дочерние клетки, имеющие одинаковую наследственную информацию с материнской клеткой (саркодовые).

2. Множественное деление (шизогония) – ряд последовательных делений ядра с последующим делением цитоплазмы и образованием множества одноядерных клеток(споровики).

3. Почкование – формирование дочерней клетки (почки) меньшего размера на материнской клетке. Дочерняя клетка может отпочковываться от материнской клетки(дрожжи).

4. Спорообразование – формирование спор – одноклеточных образований, окруженных плотной оболочкой, служащих для распространения и переживания неблагоприятных условий(плесень мукор).

5. Эндогония – внутреннее почкование, когда ядро делится на 2 части, каждая даёт дочернюю особь (токсоплазма).

Формы бесполого размножения у многоклеточных.

1. Вегетативное размножение – образование новой особи из части родительской, приводящее к появлению генетически однородных групп особей.

а) у грибов происходит путем отделения специализированных или неспециализированных участков таллома; у растений - черенками, клубнями, листьями, луковицами, усами и др.

б) у животных вегетативное размножение осуществляется:

Путем обособления частей тела с последующим восстановлением до целого организма – фрагментация (ресничные и дождевые черви);

Почкованием – образованием на материнском организме почки – выроста, из которого развивается новая особь (гидра).

2. Спорообразование – один из этапов цикла воспроизведения с помощью спор у семенных растений, у высших споровых.

Половое размножение – различные формы размножения организмов, при которых новый организм возникает из специализированных половых клеток или особей, выполняющих эти функции. При половом размножении необходимо, как правило, наличие двух родительских особей. Потомки, как правило, неидентичны.

Формы полового размножения у одноклеточных.

1. Копуляция – процесс слияния двух половых клеток или особей, не различающихся между собой (изогаметы) – у споровиков, жгутиковых.

2. Конъюгация – половой процесс, заключающийся во временном соединении двух особей и обмене частями их ядерного аппарата, а так же небольшим количеством цитоплазмы (у бактерий, инфузорий).

Формы полового размножения у многоклеточных.

1. С оплодотворением .

Оплодотворению предшествует осеменение – процессы, обуславливающие встречу гамет. Оно бывает наружное и внутреннее.Оплодотворение – (сингамия) – слияние мужской половой клетки (сперматозоид, спермий) с женской (яйцо, яйцеклетка), приводящее к образованию зиготы, которая дает начало новому организму. Когда в яйцеклетку проникает один спермий, то такое явление называют моноспермией , если несколько –полиспермией .

2.Без оплодотворения.

Партеногенез – форма полового размножения, при котором женские организмы развиваются из неоплодотворенной яйцеклетки. Различают естественный и искусственный партеногенез.Естественный партеногенез открыт Ш.Бонне, происходит в природе без вмешательства человека. Он в свою очередь подразделяется на:

а)факультативный - любое яйцо может дробиться как без оплодотворения, так и после него.

б)облигатный - развитие яйца возможно только без оплодотворения. Такой вид партеногенеза открыт в 1886г. А.А. Тихомировым. При этой форме партеногенеза развитие организма из неоплодотворенного яйца происходит после его механического или химического раздражения в лабораторных условиях.

Андрогенез – форма размножения организмов, при которой в развитии зародыша участвуют одно или два ядра, привнесенные в яйцо сперматозоидами, а женское ядро - не участвует. (встречается у тутового шелкопряда)

Гиногенез – форма размножения организмов, при которой сперматозоид стимулирует начало дробления яйцеклетки, но ядро его не сливается с ядром яйца и не участвует в последующем развитии зародыша. Иногда гиногенез рассматривают как одну из форм партеногенеза. Встречается гиногенез у покрытосеменных растений, некоторых видов рыб и земноводных, круглых червей.

Биологическая роль полового размножения.

При половом размножении наблюдается перекомбинация наследственных признаков родителей, поэтому появляются разнообразные генотипически и фенотипически потомки. Таким образом, половое размножение дает источник изменчивости, благодаря чему появляется возможность лучшего приспособления организмов к среде обитания, к сохранению различных видов организмов.

Тип урока: урок-обобщение.

Форма урока: практическое занятие.

  • продолжить формирование мировоззрения учащихся о непрерывности жизни;
  • познакомить с химико-биологической разницей процессов, происходящих в клетке во время митоза и мейоза;
  • формировать умение последовательно выстраивать процессы митоза и мейоза;
  • формировать навыки сравнительного анализа процессов деления клетки;

1. образовательные:

а) актуализировать знания учащихся о разных видах деления клетки (митозе, амитозе, мейозе);

б) сформировать представление о главных чертах сходства и различия между процессами митоза и мейоза, их биологической сущности;

2. воспитательная: развивать познавательный интерес к информации из разных областей науки;

3. развивающие:

а) развивать навыки работы с разными видами информации и способами её предъявления;

б) продолжить работу над развитием навыков анализировать и сравнивать процессы деления клетки;

Учебное оборудование: компьютер с мультимедийным проектором, модель-аппликация “Деление клетки. Митоз и мейоз” (демонстрационный и раздаточный комплекты); таблица “Митоз. Мейоз”.

Структура урока (занятие рассчитано на один академический час, проводится в кабинете биологии с мультимедийным проектором, рассчитано на 10 класс химико-биологического профиля). Краткий план занятия :

1. организационный момент (2 мин);

2. актуализация знаний, основных терминов и понятий, связанных с процессами деления клетки (8 мин);

3. обобщение знаний о процессах митоза и мейоза (13 мин);

4. практическая работа “Черты сходства и различия между митозом и мейозом (15 мин);

Закрепление знаний по изученной теме (5 мин);

Домашнее задание (2 мин).

Подробный конспект занятия:

1. организационный момент . Пояснение цели урока, его место в изучаемой теме, особенности проведения.

2. актуализация знаний , основных терминов и понятий, связанных с процессами деления клетки: - деление клеток;

3. обобщение знаний о процессах деления клетки:

3.1. Митоз:

Демонстрация интерактивной модели “Митоз”;

Практическая работа с моделью-аппликацией “Митоз” (раздаточный материал на каждого ученика, отработка навыка учащихся показывать последовательность процессов митоза);

Работа с моделью-аппликацией “Митоз” (демонстрационный комплект, проверка результатов практической работы)

Беседа о фазах митоза:

Фаза митоза, набор хромосом (n-хромосомы,с - ДНК) Рисунок Характеристика фазы, расположение хромосом
Профаза Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом.
Метафаза Выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).
Телофаза Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счёт борозды деления, в растительных клетках – за счёт клеточной пластинки.

3.2. Мейоз .

Демонстрация интерактивной модели “Мейоз”

Практическая работа с моделью-аппликацией “Мейоз” (раздаточный материал на каждого ученика, отработка навыка учащихся показывать последовательность процессов мейоза);

Работа с моделью-аппликацией “Мейоз” (демонстрационный комплект, проверка результатов практической работы)

Беседа о фазах мейоза:

Фаза мейоза, набор хромосом (n - хромосомы,
с - ДНК)
Рисунок Характеристика фазы, расположение хромосом
Профаза 1
2n4c
Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.
Метафаза 1
2n4c
Выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза 1
2n4c
Случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому), перекомбинация хромосом.
Телофаза 1
в обеих клетках по 1n2c
Образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы.
Профаза 2
1n2c
Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.
Метафаза 2
1n2c
Выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза 2
2n2c
Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.
Телофаза 2
в обеих клетках по 1n1c

Всего
4 по 1n1c

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием двух, а в итоге обоих мейотических делений – четырех гаплоидных клеток.

Беседа об изменении формулы ядра клетки

Беседа о результатах мейоза:

из одной гаплоидной материнской клетки образуется четыре гаплоидные дочерние клетки

Беседа о значении мейоза: а )поддерживает постоянное число хромосом вида из поколения в поколение (диплоидный набор хромосом каждый раз восстанавливается в ходе оплодотворения в результате слияния двух гаплоидных гамет;

б) мейоз - один из механизмов возникновения наследственной изменчивости (комбинативной изменчивости);

4. Практическая работа “Сравнение митоза и мейоза” с использованием презентации “Митоз и мейоз. Сравнительный анализ” (см. Приложение 1)

У учащихся домашние заготовки таблицы:

Отработка черт сходства между митозом и мейозом:

Отработка общих различий между митозом и мейозом (с небольшими уточнениями по фазам деления):

Сравнение Митоз Мейоз
Сходства 1.Имеют одинаковые фазы деления.
2.Перед митозом и мейозом происходит самоудвоение молекул ДНК в хромосомах (редупликация) и спирализация хромосом.
Различия 1. Одно деление. 1. Два последовательных деления.
2. В метафазе все удвоенные хромосомы выстраиваются по экватору раздельно.
3. Нет конъюгации 3. Есть конъюгация
4. Удвоение молекул ДНК происходит в интерфазе, разделяющий два деления. 4. Между первым и вторым делением нет интерфазы и не происходит удвоения молекул ДНК.
5. Образуются две диплоидные клетки (соматические клетки). 5. Образуются четыре гаплоидные клетки (половые клетки).
6.Происходит в соматических клетках 6. происходит в созревающих половых клетках
7.Лежит в основе бесполого размножения 7.Лежит в основе полового размножения

5. Закрепление материала.

Выполнение задания части В контрольно-измерительных материалов ЕГЭ.

Соотнесите отличительные признаки и типы деления клетки:

Отличительные признаки Типы деления клеток

1. Происходит одно деление А) митоз
2. Гомологичные удвоенные хромосомы выстраиваются по экватору парами (бивалентами).
3. Нет конъюгации В) мейоз
4. Поддерживает постоянное число хромосом вида из поколения в поколение
5. Два последовательных деления.
6. Удвоение молекул ДНК происходит в интерфазе, разделяющий два деления
7. Образуются четыре гаплоидные клетки (половые клетки).
8. Между первым и вторым делением нет интерфазы и не происходит удвоения молекул ДНК.
9. Есть конъюгация
10. Образуются две диплоидные клетки (соматические клетки)
11. В метафазе по экватору выстраиваются все удвоенные хромосомы раздельно

12. Обеспечивает бесполое размножение, регенерацию утраченных частей, замещение клеток у многоклеточных организмов

13. Обеспечивает стабильность кариотипа соматических клеток в течение всей жизни
14.Является одним из механизмов возникновения наследственной изменчивости (комбинативной изменчивости;

6. Домашнее задание:

Таблицу “Сравнение митоза и мейоза” оформить в тетради

Повторить материал о митозе и мейозе (подробно о стадиях)

29,30 (В.В.Пасечник);19,22 с.130-134 (Г.М.Дымшиц)

Подготовить таблицу “Сравнительная характеристика хода митоза и мейоза”

Сравнительная характеристика митоза и мейоза

Фазы клеточного цикла, ее итог Митоз Мейоз
I деление II деление
Интерфаза : синтез ДНК,РНК, АТФ, белков, увеличение

количества органелл,

достраивание второй хроматиды каждой хромосомы

Профаза:

а) спирализация хромосом

б) разрушение ядерной оболочки; в) разрушение ядрышек; г) формирование митотического аппарата:расхождение центриолей к полюсам клетки, образование веретена деления

Метафаза :

а) формирование экваториальной пластинки- хромосомы выстраиваются строго по экватору клетки;

б) прикрепление нитей веретена деления к центромерам;

в) к концу метафазы – начало разъединения сестринских хроматид

Анафаза:

а) завершение разделения сестринских хроматид;

б) расхождение хромосом к полюсам клетки

Телофаза – формирование дочерних клеток:

а) разрушение митотического аппарата; б) разделение цитоплазмы; в) деспирализация хромосом;

Список литературы:

1. И.Н.Пименова, А.В.Пименов – Лекции по общей биологии - Саратов, ОАО “Издательство “Лицей”, 2003 г.

2. Общая биология: учебник для 10-11 классов с углублённым изучением биологии в школе/Под ред. В.К.Шумного, Г.М.Дымшица, А.О.Рувинского. – М., “Просвещение”, 2004г.

3. Н. Грин, У.Стаут, Д. Тейлор – Биология: в 3-х томах. Т.3.: пер. с англ./Под ред. Р.Сопера. – М., “Мир”, 1993 г.

4. Т.Л.Богданова, Е.А.Солодова – Биология: справочник для старшеклассников и поступающих в вузы – М., “АСТ-ПРЕСС ШКОЛА”, 2004 г.

5. Д.И.Мамонтов – Открытая биология: полный интерактивный курс биологии (на CD)– “Физикон”, 2005 г.