Белки физические и химические свойства. Белки у разных видов организмов. У пептидной связи есть несколько особенностей

Белки являются биополимерами, мономерами которых являются остатки альфа-аминокислот, соединенные между собой посредством пептидных связей. Аминокислотная последовательность каждого белка строго определена, в живых организмах она зашифрована посредством генетического кода, на основе считывания которого и происходит биосинтез белковых молекул. В построении белков участвует 20 аминокислот.

Различают следующие виды структуры белковых молекул:

  1. Первичная. Представляет собой аминокислотную последовательность в линейной цепи.
  2. Вторичная. Это более компактная укладка полипептидных цепей при помощи формирования водородных связей между пептидными группами. Есть два варианта вторичной структуры – альфа-спираль и бета-складчатость.
  3. Третичная. Представляет собой укладку полипептидной цепочки в глобулу. При этом формируются водородные, дисульфидные связи, также стабилизация молекулы реализуется благодаря гидрофобным и ионным взаимодействиям аминокислотных остатков.
  4. Четвертичная. Белок состоит из нескольких полипептидных цепей, которые взаимодействуют между собой посредством нековалентных связей.

Таким образом, соединенные в определенной последовательности аминокислоты образуют полипептидную цепь, отдельные части которой сворачиваются в спираль или формируют складки. Такие элементы вторичной структур образуют глобулы, формируя третичную структуру белка. Отдельные глобулы взаимодействуют между собой, образуя сложные белковые комплексы с четвертичной структурой.

Классификация белков

Существует несколько критериев, по которым можно классифицировать белковые соединения. По составу различают простые и сложные белки. Сложные белковые вещества содержат в своем составе неаминокислотные группы, химическая природа которых может быть различной. В зависимости от этого выделяют:

  • гликопротеины;
  • липопротеины;
  • нуклеопротеины;
  • металлопротеиды;
  • фосфопротеины;
  • хромопротеиды.

Также существует классификация по общему типу строения:

  • фибриллярные;
  • глобулярные;
  • мембранные.

Протеинами называют простые (однокомпонентные) белки, состоящие лишь из остатков аминокислот. В зависимости от растворимости они делятся на следующие группы:

Подобная классификация не совсем точна, ведь согласно последним исследованиям многие простые белки связаны с минимальным количеством небелковых соединений. Так, в состав некоторых протеинов входят пигменты, углеводы, иногда липиды, что делает их больше похожими на сложные белковые молекулы.

Физико-химические свойства белка

Физико-химические свойства белков обусловлены составом и количеством входящих в их молекулы остатков аминокислот. Молекулярные массы полипептидов сильно колеблются: от нескольких тысяч до миллиона и более. Химические свойства белковых молекул разнообразны, включают в себя амфотерность, растворимость, а также способность к денатурации.

Амфотерность

Поскольку в состав белков входят и кислые, и основные аминокислоты, то всегда в составе молекулы будут свободные кислые и свободные основные группы (СОО- и NН3+ соответственно). Заряд определяется соотношением основных и кислых аминокислотных групп. По этой причине белки заряжены “+”, если уменьшается рН, и наоборот, “-”, если рН увеличивается. В случае, когда рН соответствует изоэлектрической точке, белковая молекула будет иметь нулевой заряд. Амфотерность важна для осуществления биологических функций, одной из которых является поддержание уровня рН в крови.

Растворимость

Классификация белков по свойству растворимости уже была приведена выше. Растворимость белковых веществ в воде объясняется двумя факторами:

  • заряд и взаимное отталкивание белковых молекул;
  • формирование гидратной оболочки вокруг белка – диполи воды взаимодействуют с заряженными группами на внешней части глобулы.

Денатурация

Физико-химическое свойство денатурации представляет собой процесс разрушения вторичной, третичной структуры белковой молекулы под влиянием ряда факторов: температуры, действии спиртов, солей тяжелых металлов, кислот и других химических агентов.

Важно! Первичная структура при денатурации не разрушается.

Химические свойства белков, качественные реакции, уравнения реакций

Химические свойства белков можно рассмотреть на примере реакций их качественного обнаружения. Качественные реакции позволяют определить наличие пептидной группы в соединении:

1. Ксантопротеиновая. При действии на белок азотной кислоты высокой концентрации образуется осадок, который при нагревании приобретает желтый цвет.

2. Биуретовая. При действии на слабощелочной раствор белка сульфата меди образуются комплексные соединения между ионами меди и полипептидами, что сопровождается окрашиванием раствора в фиолетово-синий цвет. Реакция используется в клинической практике для определения концентрации белка в сыворотке крови и других биологических жидкостях.

Еще одним важнейшим химическим свойством является обнаружение серы в белковых соединениях. С этой целью щелочной раствор белка нагревают с солями свинца. При этом получают черный осадок, содержащий сульфид свинца.

Биологическое значение белка

Благодаря своим физическим и химическим свойствам белки выполняют большое количество биологических функций, в перечень которых входят:

  • каталитическая (белки-ферменты);
  • транспортная (гемоглобин);
  • структурная (кератин, эластин);
  • сократительная (актин, миозин);
  • защитная (иммуноглобулины);
  • сигнальная (рецепторные молекулы);
  • гормональная (инсулин);
  • энергетическая.

Белки важны для организма человека, поскольку участвуют в образовании клеток, обеспечивают сокращение мышц у животных, вместе с сывороткой крови переносят многие химические соединения. Помимо этого, белковые молекулы являются источником незаменимых аминокислот и осуществляют защитную функцию, участвуя в выработке антител и формировании иммунитета.

ТОП-10 малоизвестных фактов о белке

  1. Белки начали изучать с 1728 года, именно тогда итальянец Якопо Бартоломео Беккари выделил белок из муки.
  2. Сейчас широкое распространение получили рекомбинантные белки. Их синтезируют путем модификации генома бактерий. В частности, таким способом получают инсулин, факторы роста и другие белковые соединения, которые используют в медицине.
  3. У антарктических рыб были обнаружены белковые молекулы, предотвращающие замерзание крови.
  4. Белок резилин отличается идеальной эластичностью и является основой мест крепления крыльев насекомых.
  5. В организме есть уникальные белки шапероны, которые способны восстанавливать корректную нативную третичную или четвертичную структуру других белковых соединений.
  6. В ядре клетки присутствуют гистоны – белки, которые принимают участие в компактизации хроматина.
  7. Молекулярную природу антител – особых защитных белков (иммуноглобулинов) – начали активно изучать с 1937 года. Тиселиус и Кабат применяли электрофорез и доказали, что у иммунизированных животных увеличена гамма-фракция, а после абсорбции сыворотки провоцирующим антигеном, распределение белков по фракциям возвращалось к картине интактного животного.
  8. Яичный белок – яркий пример реализации белковыми молекулами резервной функции.
  9. В молекуле коллагена каждый третий аминокислотный остаток образован глицином.
  10. В составе гликопротеинов 15-20% составляют углеводы, а в составе протеогликанов их доля – 80-85%.

Заключение

Белки – сложнейшие соединения, без которых сложно представить жизнедеятельность любого организма. Выделено более 5000 белковых молекул, но каждый индивидуум обладает собственным набором белков и этим отличается от других особей своего вида.

Важнейшие химические и физические свойства белков обновлено: Октябрь 29, 2018 автором: Научные Статьи.Ру

Изоэлектрическая точка

Амфотерность - кислотно- основные свойства белков.

Четвертичная структура

Многие белки состоят из нескольких субъединиц(протомеров), которые могут иметь одинаковый или различный аминокислотный состав. В этом случае белки имеют четвертичную структуру . Белки обычно содержат четное число субъединиц: две, четыре, шесть. Взаимодействие происходит за счет ионных, водородных связей, Ван-дер-ваальсовых сил. Гемоглобин взрослого человека HbA состоит из четырех попарно одинаковых субъединиц (а 2 β 2).

Четвертичная структура дает многие биологические преимущества:

а) возникает экономия генетического материала., уменьшается длина структурного гена и иРНК, в которых записана информация о первичной структуре белка.

б) возможно осуществлять замену субъединиц, что позволяет изменять активность

фермента в связи с изменяющимися условиями(осуществлять адаптацию). Гемоглобин

новорожденного состоит из белков (а 2 γ 2) . но в течение первых месяцев состав становится как у взрослого человека (а 2 β 2) .

8.4 . Физико-химические свойства белка

Белки, как и аминокислоты, являются амфотерными соединениями и обладают буферными свойствами.

Белки можно разделить на нейтральные, кислые и основные .

Нейтральные белки содержат равное число групп, склонных к ионизации: кислотных и основных. Изоэлектрическая точка таких белков находится в среде, близкой к нейтральной, если рН < pI , то белок становится положительно заряженным катионом, pH > pI , то белок становится отрицательно заряженным анионом.

NH 3 - белок - COOН <--> + NH 3 - белок - COO – <--> NH 2 - белок - COO –

рН < pI водный растворI pH > pI

Кислые белки содержат неравное число групп, склонных к ионизации: карбоксильных больше, чем аминогрупп. В водном растворе они приобретают отрицательный заряд, а раствор становится кислым. При добавлении кислоты (Н +) белок вначале входит в изоэлектрическую точку, а затем в избытке кислоты – превращается в катион. В щелочной среде такой белок заряжен отрицательно(исчезает заряд аминогруппы).

Кислый белок

NH 3 - белок - COO – + Н + + NH 3 - белок - COO – + Н + + NH 3 -белок- COOН

| <--> | <--> |

CОО – CООН COOН

Водный раствор рН = р I рН < pI

В избытке кислоты белок

заряжен положительно

Кислый белок в щелочной среде заряжен отрицательно

NH 3 - белок - COO – ОН – NH 2 - белок - COO –

| <--> |

CОО – CОО –

pH > pI

Основные белки содержат неравное число групп, склонных к ионизации: аминогрупп больше, чем карбоксильных. В водном растворе они приобретают положительный заряд, а раствор становится щелочным. При добавлении щелочи (ОН –) белок вначале входит в изоэлектрическую точку, а далее в избытке щелочи – превращается в анион. В кислой среде такой белок заряжен положительно(исчезает заряд карбоксильной группы)

Прежде чем рассказать о важнейших физических и химических свойствах белка, нужно знать из чего он состоит, какая у него структура. Белки - это важный природный биополимер, фундаментом для него служат аминокислоты.

Что такое аминокислоты

Это органические соединения, в состав которых входят карбоксильная и аминная группы. Благодаря первой группе у них есть углерод, кислород и водород, а другой - азот и водород. Самыми важными считаются альфа-аминокислоты, потому что они нужны для образования белков.

Существуют незаменимые аминокислоты, которые называются протеиногенные. Вот они и отвечают за появление белков. Их имеется всего 20, а белковых соединений они могут образовывать бесчисленное множество. При этом ни один из них не будет полностью идентичным другому. Это возможно благодаря комбинациям элементов, которые есть в этих аминокислотах.

Их синтез не происходит в организме. Поэтому туда они попадают вместе с продуктами питания. Если человек получает их в недостаточном количестве, то возможно нарушение нормального функционирования различных систем. Белки образуются благодаря реакции поликонденсации.

Белки и их структура

Прежде чем перейти к физическим свойствам белков, стоит дать более точное определение этому органическому соединению. Белки - это одни из наиболее значимых биоорганических соединений, которые образуются благодаря аминокислотам и принимают участие во многих процессах, происходящих в организме.

Структура этих соединений зависит от того, в каком порядке чередуются остатки аминокислот. В результате этого она бывает следующая:

  • первичная (линейная);
  • вторичная (спиралевидная);
  • третичная (глобулярная).

Их классификация

Из-за огромного разнообразия белковых соединений и различной степени сложности их состава и разной структуры, для удобства существуют классификации, которые опираются на эти признаки.

По своему составу они бывают следующими:

  • простые;
  • сложные, которые подразделяются в свою очередь на:
  1. соединение белка и углеводов;
  2. соединение белков и жиров;
  3. соединение белковых молекул и нуклеиновых кислот.

По растворимости:

  • водорастворимые;
  • жирорастворимые.

Небольшая характеристика белковых соединений

Прежде чем перейти к физическим и химическим свойствам белков, будет полезно дать им небольшую характеристику. Конечно, их свойства имеют важное значение для нормального функционирования живого организма. По своему изначальному состоянию это твердые вещества, которые либо растворяются в различных жидкостях, либо нет.

Если говорить кратко о физических свойствах белков, то они обуславливают многие важнейшие биологические процессы в организме. Например, такие как транспортировка веществ, строительная функция и др. Физические свойства белков зависят от того, являются они растворимыми или нет. Вот как раз об этих особенностях и будет написано дальше.

Физические свойства белков

Выше уже написано об их агрегатном состоянии и растворимости. Поэтому переходим к следующим свойствам:

  1. У них имеется большая молекулярная масса, которая зависит от определенных условий среды.
  2. Их растворимость имеет большой диапазон, вследствие чего становится возможным электрофорез - метод, с помощью которого выделяются белки из смесей.

Химические свойства белковых соединений

Читатели теперь знают, какими физическими свойствами обладают белки. Теперь нужно рассказать о не менее важных, химических. Они перечислены ниже:

  1. Денатурация . Свертывание белка под воздействием высоких температур, сильных кислот или щелочей. При денатурации сохраняется только первичная структура, а все биологические свойства белков теряются.
  2. Гидролиз . В результате его образуются простые белки и аминокислоты, потому что происходит разрушение первичной структуры. Он является основой процесса пищеварения.
  3. Качественные реакции на определение белка . Их всего две, а третья нужна для того, чтобы обнаружить серу в данных соединениях.
  4. Биуретовая реакция. На белки воздействуют осадком гидроксида меди. В итоге происходит окрашивание в фиолетовый цвет.
  5. Ксантопротеиновая реакция . Воздействие осуществляется при помощи концентрированной азотной кислоты. В результате этой реакции получается белый осадок, который при нагревании становится желтым. А если добавить водный аммиачный раствор, то появляется оранжевый цвет.
  6. Определение серы в белках . Когда происходит горение белков, то начинает ощущаться запах "жженого рога". Это явление объясняется тем, что в них содержится сера.

Итак, это были все физические и химические свойства белков. Но, конечно, не только из-за них они считаются важнейшими компонентами живого организма. Они обусловливают важнейшие биологические функции.

Биологические свойства белков

Нами были рассмотрены физические свойства белков в химии. Но стоит также обязательно рассказать о том, какое влияние они оказывают на организм и почему без них он не будет полноценно функционировать. Ниже перечислены функции белков:

  1. ферментативная. Большинство реакций в организме протекает с участием ферментов, которые имеют белковое происхождение;
  2. транспортная. Данные элементы осуществляют доставку других важных молекул в ткани и органы. Одним из самых значимых транспортных белков является гемоглобин;
  3. структурная. Белки являются главным строительным материалом для многих тканей (мышечной, покровной, опорной);
  4. защитная. Антитела и антитоксины представляют собой особый вид белковых соединений, которые составляют основу иммунитета;
  5. сигнальная. Рецепторы, которые отвечают за работу органов чувств, тоже имеют в своей структуре белки;
  6. запасающая. Данную функцию выполняют особые белки, которые могут быть строительным материалом и являться источниками дополнительной энергии во время развития новых организмов.

Белки способны превращаться в жиры и углеводы. А вот они не смогут стать белками. Поэтому недостаток именно этих соединений особенно опасен для живого организма. Выделяемая при энергия невелика и уступает в этом отношении жирам и углеводам. Однако именно они являются источником незаменимых аминокислот в организме.

Как понять, что в организме не хватает белка? У человека ухудшается самочувствие, наступает быстрая истощаемость и утомляемость. Прекрасными источниками белка являются различные сорта пшеницы, мясные и рыбные продукты, молочные, яйца и некоторые виды зернобобовых культур.

Важно знать не только физические свойства белков, но и химические, а также то, какое значение они имеют для организма с биологической точки зрения. Белковые соединения уникальны тем, что являются источниками незаменимых аминокислот, которые нужны для нормального функционирования человеческого организма.


Белки – это биополимеры, состоящие из остатков α-аминокислот, соединённых между собой пептидными связями (-CO-NH-). Белки входят в состав клеток и тканей всех живых организмов. В молекулы белков входит 20 остатков различных аминокислот.

Структура белка

Белки обладают неисчерпаемым разнообразием структур.

Первичная структура белка – это последовательность аминокислотных звеньев в линейной полипептидной цепи.

Вторичная структура – это пространственная конфигурация белковой молекулы, напоминающая спираль, которая образуется в результате скручивания полипептидной цепи за счёт водородных связей между группами: CO и NH.

Третичная структура – это пространственная конфигурация, которую принимает закрученная в спираль полипептидная цепь.

Четвертичная структура – это полимерные образования из нескольких макромолекул белка.

Физические свойства

Свойства белков весьма разнообразны, которые они выполняют. Одни белки растворяются в воде, образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д.

При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и других факторов) происходит измене- ние вторичной, третичной и четвертичной структур белковой макромолекулы, то есть ее нативной пространственной структуры. Первичная структура, а следователь- но, и химический состав белка не меняются. Изменяются физические свойства: сни- жается растворимость, способность к гидратации, теряется биологическая актив-ность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатура- ция белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработке пи- щевого сырья,полуфабрикатов, а иногда и готовых продуктов. Особую роль про- цессы тепловой денатурации играют при бланшировании растительного сырья, суш- ке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). К денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используют в пищевой и биотехнологии.

Качественные реакции на белки :

а) При горении белка – запах палёных перьев.

б) Белок +HNO 3 → жёлтая окраска

в) Раствор белка +NaOH + CuSO 4 → фиолетовая окраска

Гидролиз

Белок + Н 2 О → смесь аминокислот

Функции белков в природе:

· каталитические (ферменты);

· регуляторные (гормоны);

· структурные (кератин шерсти, фиброин шелка, коллаген);

· двигательные (актин, миозин);

· транспортные (гемоглобин);

· запасные (казеин, яичный альбумин);

· защитные (иммуноглобулины) и т.д.

Гидратация

Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается. Набухание бел- ка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности бел- ковой макромолекулы гидрофильные амидные (–CO–NH–, пептидная связь), амин- ные (NH 2) и карбоксильные (COOH) группы притягивают к себе молекулы воды, строго ориентируя их на поверхность молекулы. Окружая белковые глобулы гидрат- ная (водная) оболочка препятствует устойчивости растворов белка. В изоэлектричес- кой точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяют- ся, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этило- вого спирта. Это приводит к выпадению белков в осадок. При изменении pH среды макромолекула белка становится заряженной, и его гидратационная способность ме- няется.

При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студнями. Студни не текучи, упруги, обладают плас-тичностью, определенной механической прочностью, способны сохранять свою фор- му. Глобулярные белки могут полностью гидратироваться, растворяясь в воде (нап- ример, белки молока), образуя растворы с невысокой концентрацией. Гидрофильные свойства белков имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, построенным в основном из молекул белка, является цитоплазма– полужидкое содержимое клетки. Сильно гидратированный студень–сырая клейковина, выделенная из пшеничного теста, она содержит до 65% воды. Гидрофильность, главное качество зерна пшеницы, белков зерна и муки играет боль- шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое полу- чают в хлебопекарном производстве, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.

Пенообразование

Процесс пенообразования–это способность белков образовывать высококонцент- рированные системы «жидкость–газ»,называемые пенами. Устойчивость пены, в ко- торой белок является пенообразователем, зависит не только от его природы и от кон- цнтрации,но и от температуры. Белки в качестве пенообразователей широко исполь- зуются в кондитерской промышленности(пастила, зефир, суфле).Структуру пены имеет хлеб, а это влияет на его вкусовые свойства.

Горение

Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.

Цветные реакции.

  • Ксантопротеиновая–происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентрированной азотной кислотой, сопровождаю- щеееся появлением желтой окраски;
  • Биуретовая – происходит взаимодействие слабощелочных растворов белков с раствором сульфата меди(II) с образованием комплексных соединений между ионами Cu 2+ и полипептидами. Реакция сопровождается появлением фиолетово–синей окраски;
  • при нагревании белков со щелочью в присутствии солей свинца выпадает черный осадок, который содержит серу.


Белки - природные полипептиды с огромной молекулярной массой. Они входят в состав всех живых организмов и выполняют различные биологические функции.

Строение белка.

У белков существует 4 уровня строения:

  • первичная структура белка - линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:
  • вторичная структура белка - конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α -спираль и β - структура.
  • третичная структура белка - это трехмерное представление закрученной α -спираль или β -структуры в пространстве:

Эта структура образуется за счет дисульфидных мостиков -S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

Синтез белка.

В основе синтеза лежит твердофазный метод, в котором первая аминокислота закрепляется на полимерном носителе, а к ней последовательно подшиваются новые аминокислоты. После полимер отделяют от полипептидной цепи.

Физические свойства белка.

Физические свойства белка определяются строением, поэтому белки делят на глобулярные (растворимые в воде) и фибриллярные (нерастворимые в воде).

Химические свойства белков.

1. Денатурация белка (разрушение вторичной и третичной структуры с сохранением первичной). Пример денатурации - свертывание яичных белков при варке яиц.

2. Гидролиз белков - необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Так можно установить количественный состав белков.

3. Качественные реакции:

Биуретовая реакция - взаимодействие пептидной связи и солей меди (II) в щелочном растворе. По окончанию реакции раствор окрашивается в фиолетовый цвет.

Ксантопротеиновая реакция - при реакции с азотной кислотой наблюдается желтое окрашивание.

Биологическое значение белка.

1. Белки - строительный материал, из него построены мышцы, кости, ткани.

2. Белки - рецепторы. Передают и воспринимают сигнал, поступающих от соседних клеток из окружающей среды.

3. Белки играют важную роль в иммунной системе организма.

4. Белки выполняют транспортные функции и переносят молекулы или ионы в место синтеза или накопления. (Гемоглобин переносит кислород к тканям.)

5. Белки - катализаторы - ферменты. Это очень мощные селективные катализаторы, которые ускоряют реакции в миллионы раз.

Есть ряд аминокислот, которые не могут синтезироваться в организме - незаменимые , их получают только с пищей: тизин, фенилаланин, метинин, валин, лейцин, триптофан, изолейцин, треонин.