Числовой коэффициент — как найти его для буквенно-числовых и буквенных выражений. Пример нахождения коэффициента корреляции

Коэффициент пропорциональности (линейный коэффициент пропорциональности) равен отношению двух соответствующих сторон подобных фигур. Подобные фигуры – это фигуры одинаковой формы, но разных размеров. Коэффициент пропорциональности используется для решения основных геометрических задач. Коэффициент пропорциональности можно использовать для вычисления длин неизвестных сторон. С другой стороны, по соответствующим сторонам можно вычислить коэффициент пропорциональности. Такие вычисления связаны с операцией умножения или с упрощением дробей.

Шаги

Вычисление коэффициента пропорциональности подобных фигур

    Убедитесь, что фигуры подобны. У таких фигур все углы равны, а стороны соотносятся в некой пропорции. Подобные фигуры имеют одинаковую форму, но одна фигура больше другой.

    • В задаче должно быть сказано, что фигуры подобны, или что у них равные углы, или что стороны пропорциональны, или что одна фигура пропорциональна другой.
  1. Найдите соответствующие стороны обеих фигур. Возможно, понадобится повернуть или зеркально отразить одну из фигур, чтобы выровнять обе фигуры и определить соответствующие стороны. Как правило, в задачах даются длины соответствующих сторон; в противном случае измерьте их. Если не знать значений хотя бы пары соответствующих сторон, нельзя найти коэффициент пропорциональности.

    • Например, дан треугольник, основание которого равно 15 см, и подобный треугольник с основанием, равным 10 см.
  2. Запишите отношение. У каждой пары подобных фигур есть два коэффициента пропорциональности: один используется при увеличении размера, а другой – при уменьшении. Если размер меньшей фигуры увеличивается до размера большей фигуры, используйте отношение: коэффициент пропорциональности = (сторона большей фигуры)/(сторона меньшей фигуры). Если размер большей фигуры уменьшается до размера меньшей фигуры, используйте отношение: коэффициент пропорциональности = (сторона меньшей фигуры)/(сторона большей фигуры).

    • Например, если треугольник с основанием 15 см уменьшается до треугольника с основанием 10 см, используйте отношение: коэффициент пропорциональности = (сторона меньшей фигуры)/(сторона большей фигуры).
      Подставив соответствующие значения, вы получите: коэффициент пропорциональности = .
  3. Упростите отношение. Упрощенное отношение (дробь) является коэффициентом пропорциональности. При уменьшении размера коэффициент пропорциональности представляет собой правильную дробь. При увеличении размера коэффициент пропорциональности представляет собой целое число или неправильную дробь, которую можно преобразовать в десятичную дробь.

    • Например, отношение 10 15 {\displaystyle {\frac {10}{15}}} упрощается до . Таким образом, коэффициент пропорциональности двух треугольников с основаниями 15 см и 10 см равен 2 3 {\displaystyle {\frac {2}{3}}} .

    Вычисление сторон по коэффициенту пропорциональности

    1. Найдите значения сторон фигуры. Значения сторон одной из подобных фигур будут даны; в противном случае измерьте их. Если стороны одной из подобных фигур неизвестны, нельзя вычислить стороны второй фигуры.

      • Например, дан прямоугольный треугольник, катеты которого равны 4 см и 3 см, а гипотенуза равна 5 см.
    2. Выясните, будет ли подобная фигура больше или меньше данной. Если больше, стороны будут больше, а коэффициент пропорциональности представляет собой целое число, неправильную или десятичную дробь. Если подобная фигура меньше данной, стороны будут меньше, а коэффициент пропорциональности представляет собой правильную дробь.

      • Например, если коэффициент пропорциональности равен 2, подобная фигура больше данной.
    3. Умножьте значение одной стороны на коэффициент пропорциональности. Коэффициент пропорциональности должен быть дан. Если умножить сторону на коэффициент пропорциональности, можно найти значение соответствующей стороны подобной фигуры.

      • Например, если гипотенуза прямоугольного треугольника равна 5 см, а коэффициент пропорциональности равен 2, гипотенуза подобного треугольника вычисляется так: 5 × 2 = 10 {\displaystyle 5\times 2=10} . Таким образом, гипотенуза подобного треугольника равна 10 см.
    4. Найдите значения остальных сторон подобной фигуры. Для этого умножьте известные значения сторон на коэффициент пропорциональности. Вы получите значения соответствующих сторон подобной фигуры.

      • Например, если основание прямоугольного треугольника равно 4 см, а коэффициент пропорциональности равен 2, основание подобного треугольника вычисляется так: 4 × 2 = 8 {\displaystyle 4\times 2=8} . Таким образом, основание подобного треугольника равно 8 см. Если катет прямоугольного треугольника равен 3 см, а коэффициент пропорциональности равен 2, катет подобного треугольника вычисляется так: 3 × 2 = 6 {\displaystyle 3\times 2=6} . Таким образом, катет подобного треугольника равен 6 см.

    Примеры решения задач

    1. Задача 1. Найдите коэффициент пропорциональности следующих подобных фигур: прямоугольник с шириной 6 см и прямоугольник с шириной 54 см.

      • Запишите отношение на основе двух значений ширины. При увеличении размера отношение запишется так: коэффициент пропорциональности = . При уменьшении размера отношение запишется так: коэффициент пропорциональности = .
      • Упростите отношение. Отношение 54 6 {\displaystyle {\frac {54}{6}}} упрощается до 9 1 = 9 {\displaystyle {\frac {9}{1}}=9} . Отношение 6 54 {\displaystyle {\frac {6}{54}}} упрощается до . Таким образом, коэффициент пропорциональности двух прямоугольников равен 9 {\displaystyle 9} или 1 9 {\displaystyle {\frac {1}{9}}} .
    2. Задача 2. Сторона неправильного многоугольника равна 14 см. Сторона подобного многоугольника равна 8 см. Найдите коэффициент пропорциональности.

Где x·y , x , y - средние значения выборок; σ(x), σ(y) - среднеквадратические отклонения.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b: , где σ(x)=S(x), σ(y)=S(y) - среднеквадратические отклонения, b - коэффициент перед x в уравнении регрессии y=a+bx .

Другие варианты формул:
или

К xy - корреляционный момент (коэффициент ковариации)

Линейный коэффициент корреляции принимает значения от –1 до +1 (см. шкалу Чеддока). Например, при анализе тесноты линейной корреляционной связи между двумя переменными получен коэффициент парной линейной корреляции, равный –1 . Это означает, что между переменными существует точная обратная линейная зависимость.

Геометрический смысл коэффициента корреляции : r xy показывает, насколько различается наклон двух линий регрессии: y(x) и х(у) , насколько сильно различаются результаты минимизации отклонений по x и по y . Чем больше угол между линиями, то тем больше r xy .
Знак коэффициента корреляции совпадает со знаком коэффициента регрессии и определяет наклон линии регрессии, т.е. общую направленность зависимости (возрастание или убывание). Абсолютная величина коэффициента корреляции определяется степенью близости точек к линии регрессии.

Свойства коэффициента корреляции

  1. |r xy | ≤ 1;
  2. если X и Y независимы, то r xy =0, обратное не всегда верно;
  3. если |r xy |=1, то Y=aX+b, |r xy (X,aX+b)|=1, где a и b постоянные, а ≠ 0;
  4. |r xy (X,Y)|=|r xy (a 1 X+b 1 , a 2 X+b 2)|, где a 1 , a 2 , b 1 , b 2 – постоянные.

Инструкция . Укажите количество исходных данных. Полученное решение сохраняется в файле Word (см. Пример нахождения уравнения регрессии). Также автоматически создается шаблон решения в Excel . .

Количество строк (исходных данных)
Заданы итоговые значения величин (∑x, ∑x 2 , ∑xy, ∑y, ∑y 2)

Новички сталкиваются с проблемами там, где для опытных и успешных бетторов нет никаких препятствий. Начинающие игроки не могут регулярно находить адекватные ставки с коэффициентом около двух. В этой статье разберем варианты ставок с котировками от 1.80 до 2.20.

  1. Коэффициент 2.0 – довольно высокий. Чтобы зарабатывать при игре на таких котировках, достаточно показывать 53-55% проходимости.
  2. Коэффициент 2.0 – не чересчур большой, если котировки в конкретной игре отражают реальную вероятность исхода. Это 50%, без учета маржи букмекера. Находить адекватные события с вероятностью 50 на 50 не настолько трудно, как кажется. Гораздо сложнее взять коэффициент от 2.5.
  3. Многие стратегии ставок предназначены для игры с коэффициентом 2.0. В первую очередь, это финансовые системы «мартингейл» и «догон». Именно поэтому новички часто ищут информацию о том, какие варианты пари с этим коэффициентом можно заиграть.

Для начала откройте линию букмекера и посмотрите виды ставок. В росписи множество рынков с коэффициентом в районе 2.0, но какие из них адекватные?

Ниже представлены оптимальные варианты ставок с коэффициентом 2.0. Каждая сделка должна обосновываться и опираться на проведенный анализ, а не делаться вслепую, исходя из значений котировок.

Чистая победа

Стандартный чистый выигрыш. Когда на успех команды предлагают поставить за 2.0, то она фаворит, но скрытый. На триумф выраженного фаворита значение меньше. Если анализ говорит об уверенной победе одного из соперника, смело заигрывайте этот исход.

Фора (-1)

Когда фаворит явный (коэф. 1.3-1.7), и разбор говорит о разгроме, а не только выигрыше, возьмите отрицательную фору за двойку.

Фора (0)

При равных шансах соперников, нулевая фора на каждую команду оценивается одинаковыми котировками. Обычно, по 1.85-1.95, без учета маржи. Если думаете, что команда наверняка не проиграет, а скорее даже победит, то фора ноль с коэффициентом около двух – отличный вариант в плане доходности и рисков.

Фора (+1), (+1.5) и (+2)

Бывают поединки, в которых у аутсайдера имеются хорошие шансы на ничью или минимальное поражение. Целесообразно взять плюсовую фору. В росписи редко можно найти достойные варианты с положительной форой на андердога.

Гол команды

Это ставка «команда забьет» или ИТБ (0.5). Букмекеры часто дают на гол аутсайдера коэффициент близок к двум. Встречаются поединки, когда такая сделка оправдана. Ставьте, если у андердога есть атакующий потенциал, а контора переоценивает надежность защитной линии фаворита.

Индивидуальный тотал больше (1)

Ставка на ИТБ (1) с коэф. 2.0 возможна в противостоянии равных соперников и матчах, где фаворит не ярковыраженный. Если более слабая команда выступает при родных болельщиках, она способна забивать даже лидерам чемпионата. Главное, подкрепляйте выбор фактами.

Заиграть ИТБ (1) можно и в играх, когда прогнозируется много голов. Преимущество ставки – она не привязана к результату, ведь даже если команда уступит 3:2, сделка все равно окажется успешной. Определите потенциал команды в дуэли с конкретным противником.

Индивидуальный тотал больше (1.5) и (2.0)

Больший тотал. Естественно, это ставка на явного фаворита, когда предсказываете голевую феерию. Здесь важно учесть риски. Просчитайте, есть ли у футболистов мотивация забить два и больше голов. Вдруг их устроит минимальная победа или соперник закроется настолько, что пропустит максимум раз?

Тотал больше/меньше (2.5)

Стандартное значение тотала. В большинстве поединков на оба тотала дают котировки, близкие к двум. Если анализ указывает в пользу определенной стороны, то ставка вполне неплохая. Главное, аргументировать выбор.

Помните, что общий тотал матча – более опасный исход, нежели те, которые мы рассмотрели ранее.

Тотал меньше/больше (2.0)

Когда в конторе ожидается малорезультативная встреча, то основной тотал опускается к двум. Если вы согласны с мнением аналитиков БК и не просматриваете больше одного гола, заигрывайте ТМ (2).

ТБ (2) в основной росписи обычно встречается в незабивных чемпионатах, например, РФПЛ и ФНЛ, где букмекеры порой предлагают даже ТБ (1.5). Я нередко нахожу заниженные тоталы и зарабатываю на недооценке букмекеров.

Тотал больше/меньше (3)

Основной тотал (3) выставляется там, где ожидается много забитых мячей. Ограничитесь на 3-х голах. Заигрывать ТБ (3.5) и больше – рискованно. В некоторых событиях, в зависимости от проведенного анализа, можно взять ТБ (3) и ТМ (3). С одной стороны вы увеличите коэффициент, а с другой – снизите риски. ТБ (3) – это тот же ТБ (2.5), просто с возможность возврата.

Обе забьют

Ставка, вероятность которой 50%, независимо от котировок контор. Заигрывайте, если ОЗ оценивается высоким коэффициентом, минимум – 1.85. Но лучше рассмотрите другие, менее рискованные исходы.

ОЗ + ТБ (2.5)

Это сдвоенная ставка, состоящая с обе забьют и тотала. Исход логично заигрывать, когда есть уверенность в ОЗ и верхнем тотале. Однако в отдельности эти ставки оцениваются котировками 1.7-1.8, или еще меньше. А за комбинированный вариант дается уже 1.9-2.1.

Конечно, в линии есть еще много исходов с коэффициентом 2.0, но чаще всего – это неоправданные и рискованные ставки. Не рекомендуется брать крупные форы, тоталы, комбинированные пари и прочее.

Резюме

Коэффициент около двух позволяет получать прибыль, даже если проходимость чуть выше 50%. С мизерными котировками уровень проходимости должен вырасти в 2-3 раза. Часто легче показать 55% проходимости с котировками 1.8-2.2, нежели 80% с коэффициентом 1.25.

Теперь вам известны варианты, как взять коэффициент около двух. Ничего сложного в этом нет. Главное, анализируйте события и оправдывайте каждую ставку.

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y - на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D - это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к - 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В - идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D - примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

«Числовой коэффициент », или просто «коэффициент » - термин, который подразумевает под собой одно и то же математическое понятие. Усвоить, в чем смысл термина, очень просто, а найти числовой коэффициент на конкретном примере еще легче. Но для начала разберемся с официальным определением.

Что называют математическим числовым коэффициентом?

Согласно учебнику математики, если выражение состоит из одного числа и нескольких буквенных обозначений, умноженных друг на друга, то данное число и будет коэффициентом всего выражения. При этом количество букв не имеет значения - число может быть умножено на одну букву, на две или сразу на пять, оно все равно остается коэффициентом.

Например, рассмотрим следующие выражения:

  • 5*a. В этом примере присутствует одно число - «5» и одна буква «а», и они перемножены друг на друга. Соответственно, число «5» будет коэффициентом всего выражения.
  • 7*b*c. Здесь мы видим выражение из одного числа и сразу двух буквенных обозначений. Но поскольку перемножение между ними сохраняется, то число «7» также остается коэффициентом.
  • 6*9*a*b. В данном случае мы видим два буквенных обозначения - и целых два числа. Однако ситуации это не меняет, ведь принцип перемножения по-прежнему присутствует. Чтобы узнать коэффициент, нужно просто взять произведение «6» и «9», то есть «54», и переписать выражение как 54*a*b. Число «54» будет коэффициентом выражения.

Необходимо напомнить, что последнее правило распространяется и на выражения, где числовые обозначения стоят не друг рядом с другом, а разделены буквами. Например, 2*c*4*a - мы можем смело переписывать данное выражение в виде 2*4*с*а, потому что при умножении не имеет значения, в каком порядке стоят множители. И таким образом, коэффициент по-прежнему находится легко и просто - это будет число «8».

Не стоит теряться, если в задаче предлагается найти коэффициент для буквенного выражения без чисел - например, y*z. В данном случае всегда используется число «1» - поскольку выражение из примера можно записать в виде 1*y*z. Коэффициент находится в выражениях и с положительными, и с отрицательными множителями.

В каких случаях найти коэффициент для всего выражения нельзя?

Общий коэффициент не может быть найден, если предусмотрены другие действия, помимо умножения. Например, если взять 3*с + а, то число «3» будет коэффициентом лишь для одного из слагаемых, но никак не для всего выражения.