Типы ядерных превращений, альфа и бета-распад. Типы ядерных реакций

Определение

Ядерной реакцией называют процесс, который возникает в результате взаимодействия нескольких (обычно двух) сложных атомных ядер или элементарных частиц.

Под определение ядерной реакции подходит, в том числе, и упругое рассеяние частиц, при котором новые частицы не возникают, и не происходит возбуждения частиц, происходит только перераспределение энергии и импульса между ними.

Рассмотрим понятие ядерной реакции в узком смысле. В подобных реакциях среди исходных частиц имеется хотя бы одно ядро. Это ядро сталкивается с элементарной частицей или другим ядром. Как результат столкновения происходит ядерная реакция, и возникают новые частицы.

Обычно ядерные реакции проходят при действии ядерных сил, но возможны исключения. Так, расщепление ядра при воздействии на него $\gamma $- кванта с высокой энергией является ядерной реакцией, но эта реакция происходит под воздействием электромагнитных сил.

Универсальная и наглядная запись ядерной реакции заимствована их химии. В левой части записывают суму исходных частиц, ставят стрелку и в правой части пишут сумму конечных продуктов реакции. Так, выражение:

\[{}^1_1{p+{}^7_3{Li\to {}^1_0{n+}{}^7_4{Be}}}(1)\]

значит, что происходит ядерная реакция при бомбардировке изотопа лития протонами, в результате получают нейтрон и изотоп бериллия.

Ядерные реакции иногда записывают в символической форме: $A(a,bcd\dots)B$, где $A$ - ядро мишени; $a$ - бомбардирующая частица; $bcd$ - частицы, которые испускаются в ходе ядерной реакции, $B$ - остаточное ядро. Заметим, что в скобках, после запятой пишут более легкие продукты реакции, вне скобок, тяжелые. В символическом виде реакцию (1) можно записать как:

\[{}^7{Li\ \left(p,n\right)}{}^7{Be}\left(2\right).\]

Часто применяют еще более короткую запись ядерных реакций, при такой записи указывают только легкие частицы и не указывают ядра, которые участвовали в реакции. Так, запись ($p,n$) обозначает, что протон выбивает нейтрон, из какого - то ядра.

Количественно ядерные реакции описывают при помощи квантовой механики.

Типы ядерных реакций

Ядерные реакции делят в соответствии со следующими признаками:

  1. По типу частиц, которые принимают участие в этих реакциях (реакции при участии заряженных частиц, например, электронов, протонов и т.д.), реакций проходящие под воздействием квантов, реакции при участи нейтронов.
  2. По величине энергии частиц, которые вызывают ядерную реакцию. Реакции с участием нейтронов часто происходят при малых энергиях, порядка электрон-вольт. Ядерные реакции вызываемые $\gamma $- квантами и заряженными частицами возникают при средних энергиях в ${\approx 10}^6$эВ. Ядерные реакции, при которых возникают элементарные частицы, не существующие в свободном состоянии, протекают при больших энергиях в сотни и тысячи мега электрон-вольт.
  3. По типу ядер, которые участвуют в ядерных реакциях: легкие, средние и тяжелые ядра.
  4. В зависимости от характера превращений, которые происходят в реакции: испускание нейтронов, заряженных частиц, реакции захвата.
  5. В зависимости от механизма взаимодействия при реакции: реакции, идущие через составное ядро и прямые ядерные реакции.

Примеры задач с решением

Пример 1

Задание. В чем заключаются особенности ядерных реакций проходящих под воздействием $\gamma $- квантов?

Решение. Ядерные реакции, которые происходят при воздействии $\gamma $- квантов еще называют фотоядерными. Эти реакции вызваны электромагнитными взаимодействиями.

Если энергия $\gamma $- кванта мала, то квант при взаимодействии с ядром испытывает только упругое рассеяние. Если энергия $\gamma $ кванта увеличивается, то появляется возможность реализации реакций типа ($\gamma ,n$); ($\gamma ,p$); ($\gamma ,\ 2n$) и т.д. Эти реакции аналогичны поглощению $\gamma -$квантов атомами, называют такие реакции ядерным фотоэффектом. При делении ядер велика вероятность реакции фотоделения ядра ($\gamma ,f$). Если энергии больше порога рождения мезона, то вместе с расщеплением ядра происходит процесс фоторождения, например, пионов.

Для реализации фотоядерных реакций энергия $\gamma $- кванта должна быть больше, чем энергия освобождения соответствующей частицы или группы частиц из ядра.

Особенностью фотоядерных реакций является существование огромных резонансов в сечениях поглощения $\gamma $ - квантов - больших и широких максимумов в зависимости эффективных сечений от энергии квантов. Для легких ядер (${}^{12}{C,\ {}^{16}O}$) этот максимум находится в области 20-25 МэВ, для средних и тяжелых: 13-18 МэВ. Ширина максимума составляет 3-4 МэВ. Максимальный вклад в полное сечение поглощения $\gamma $- квантов в области большого резонанса вносят реакции ($\gamma ,n$); ($\gamma ,p$). Сечение поглощения $\gamma $- квантов ядрами даже в области резонанса на один - два порядка меньше, сечения поглощения таких же $\gamma $- квантов, вызываемого атомными электронами. Фотоядерные реакции мало влияют на поглощение $\gamma $ - излучения веществом.

Энергетическое и угловое распределение частиц, вылетающих при ядерном фотоэффекте, не согласуется с концепцией Бора, так как считают, что поглощение $\gamma $ - кванта происходит на поверхности ядра одним или несколькими нуклонами. \textit{}

Пример 2

Задание. Что такое составное ядро при ядерных реакциях?

Решение. Многие ядерные реакции, которые протекают при невысоких энергиях, проходят через стадию образования, так называемого составного ядра (рис.1(С)).

Составное (промежуточное) ядро находится в возбужденном состоянии, время его жизни порядка $\tau \approx {10}^{-15}c$.

составного ядра ввел Н. Бор. Частица, которая проникает внутрь ядра, обычно сильно взаимодействует с его нуклонами, при этом энергия ее взаимодействия составляет примерно тот же порядок, что и кинетическая энергия сомой частицы. Поэтому вероятность захвата частицы ядром велика. Частица застревает в ядре, в результате взаимодействия с нуклонами энергия частицы уменьшается, частица довольно долго не может покинуть ядро. Частица, попав в ядро, теряет индивидуальность, и рассматривается как система новых нуклонов, присоединяясь к старым нуклонам ядра. Возникшая система нуклонов считается промежуточным ядром.

Составное ядро появляется в возбужденном состоянии и стремится потерять энергию возбуждения за счет возможного процесса. Это ядро принципиально схоже с радиоактивным ядром. Примером одного из возможных механизмов радиоактивного превращения может быть следующий: энергия захваченной частицы распределяется случайным образом между нуклонами составного ядра и в результате флуктуации концентрируется на одной из частиц. Эта частица вылетает из ядра. Совсем не обязательно, что вылетает из ядра та же частица, что была захвачена ядром.

Так, процесс столкновения частицы $a$ (рис.1) с ядром ($X$)разбивают на два этапа:

  • Частица $a$ сближается с ядром $X$, образуется составное ядро C, которое находится в возбужденном состоянии.
  • На втором этапе происходит распад составного ядра, при котором образуется новое ядро $Y$ и частица $b$.

Ядерная реакция изображается схемой.

В соответствии с видами радиоактивных излучений существуют несколько видов радиоактивного распада (типов радиоактивных превращений). Радиоактивному превращению подвергаются элементы, в ядрах которых слишком много протонов или нейтронов. Рассмотрим виды радиоактивного распада.


1. Альфа-распад характерен для естественных радиоактивных элементов с большим порядковым номером (т.е. с малыми энергиями связи). Известно около 160 альфа-активных видов ядер, в основном порядковый номер их более 82 (Z > 82). Альфа-распад сопровождается испусканием из ядра неустойчивого элемента альфа-частицы, которая представляет собой ядро атома гелия Не (в его составе 2 протона и 2 нейтрона). Заряд ядра уменьшается на 2, массовое число - на 4.


ZАХ → Z-2 А-4 У + 2 4Не; 92 238U →24 Не + 90 234Th;


88 226Ra→2 4He + 86 222Ra + γ изл.


Альфа - распад подвергается более 10% радиоактивных изотопов.


2. Бета-распад. Ряд естественных и искусственных радиоактивных изотопов претерпевают распад с испусканием электронов или позитронов:


а) Электронный бета-распад. характерен как для естественных, так и для искусственных радионуклидов, которые имеют излишек нейтронов (т.е. в основном для тяжелых радиоактивных изотопов). Электронному бета-распаду подвергается около 46% всех радиоактивных изотопов. При этом один из нейтронов превращается в , а ядро испускает и антинейтрино. Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остается без изменения.


АZ Х → АZ+1 У + е- + v-; 24194Pu→24195Am + e- + v-; 6429Cu → 6430Zn + e- + v-; 4019K → 4020Ca + e- + v-.


При испускании β-частиц ядра атомов могут находиться в возбужденном состоянии, когда в дочернем ядре обнаруживается избыток энергии, которая не захвачена корпускулярными частицами. Этот излишек энергии высвечивается в виде гамма-квантов.


13785Cs → 13756 Ва + е -+ v- + γ изл.;


б) позитронный бета-распад. Наблюдается у некоторых искусственных радиоактивных изотопов, у которых в ядре имеется излишек протонов. Он характерен для 11% радиоактивных изотопов, находящихся в первой половине таблицы Д.И.Менделеева (Z<45). При позитронном бета-распаде один из протонов превращается в , заряд ядра и соответственно атомный номер уменьшается на единицу, а массовое число остается без изменений. Ядро испускает позитрон и нейтрино.


AZX → AZ-1У + е+ + v+; 3015P → 3014Si + e+ + v+; 6428Ni + e+ + v+.


Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» или взаимодействует со свободным электроном, образуя пару «позитрон-электрон», которая мгновенно превращается в два гамма-кванта с энергией, эквивалентной массе частиц (е и е). Процесс превращения пары «позитрон-электрон» в два гамма-кванта получил название аннигиляции (уничтожения), а возникающее электромагнитное излучение - аннигиляционного. В данном случае происходит превращение одной формы материи (частиц вещества) в другую - гамма-фотоны;


в) электронный захват. Это такой вид радиоактивного превращения, когда ядро атома захватывает электрон из ближайшего к ядру энергетического К-уровня (электронный К-захват) или реже в 100 раз - из L уровня. В результате один из протонов ядра нейтрализуется электроном, превращаясь в . Порядковый номер нового ядра становится на единицу меньше, а массовое число не изменяется. Ядро испускает антинейтрино. Освободившееся место, которое занимал в К или L-уровне захваченный , заполняется электроном из более удаленных от ядра энергетических уровней. Избыток энергии, освободившийся при таком переходе, испускается атомом в виде характеристического рентгеновского излучения.


AZХ + е- → AZ-1 У + v- + рентгеновское излучение;


4019К + е- → Аr + v-+ рентгеновское излучение;


6429Сu + е- → 6428 Ni+v- + рентгеновское излучение.


Электронный К-захват характерен для 25% всех радиоактивных ядер, но в основном для искусственных радиоактивных изотопов, расположенных в другой половине таблицы Д.И. Менделеева и имеющих излишек протонов (Z = 45 - 105). Только три естественных элемента претерпевают К-захват: калий-40, лантан-139, лютеций-176 (4019K, 15957La, 17671Lu).


Некоторые ядра могут распадаться двумя или тремя способами: путем альфа- и бета-распада и К-захвата.


Калий-40 подвергается, как уже отмечалось, электронному распаду - 88%, и К-захвату - 12%. Медь-64 (6428Сu) превращается в никель (позитронный распад - 19%, К-захват - 42%; (электронный распад - 39%).


3. Испускание γ-излучения не является видом радиоактивного распада (при этом не происходит превращение элементов), а представляет собой поток электромагнитных волн, возникающих при альфа- и бета-распаде ядер атомов (как естественных, так и искусственных радиоактивных изотопов), когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета- частицей). Этот избыток мгновенно высвечивается в виде гамма-квантов.


13153I → 13154Xe + e- +v- +2γ кванта; 22688Ra → 42He + 22286Rn + γ квант.


4. - испускание протона из ядра в основном состоянии. Этот процесс может наблюдаться у искусственно полученных ядер с большим дефицитом нейтронов:


лютеций - 151 (15171Lu) - в нем на 24 нейтрона меньше, чем в стабильном изотопе 17671Lu.

Атомное оружие по праву считают не только самым страшным, но и самым величественным изобретением человечества. В нём скрыта столько разрушительной силы, что взрывной волной с лица планеты Земля сметается не только все виды жизни, но и любые, даже самые крепкие сооружения. Только на воинских хранилищах России ядерного оружия столько, что одновременный его подрыв способен привести к уничтожению нашей планеты.

И в этом нет ничего удивительного ведь российские запасы находятся на втором месте после американских. За такими представителями, как «Кузькина мать» и «Царь-бомба» закреплено звание самого мощного оружия всех времён. В ТОП 10 перечислены ядерные бомбы всего мира, обладающие или обладавшие наибольшим потенциалом. Некоторые из них были использованы, нанося при этом экологии планеты непоправимый вред.

10 место. Little boy (Малыш) мощностью 18 килотонн


Эта бомба стала первой использованной не на полигоне, а в реальных условиях. Её использование оказало большое влияние на завершение войны между Америкой и Японией. От взрыва Little boy в городе Хиросима погибло сто сорок её жителей. Длина этой бомбы составляла три метра, а диаметр – семьдесят сантиметров. Высота ядерного столба, образовавшегося после взрыва, составляла больше шести километров. Этот город и по сей день остаётся незаселенным.

9 место. Fat Man (Толстяк) – 21 килотонна


Так называлась вторая бомба, скинутая американским самолётом на город Нагасаки. Жертвами этого взрыва стало восемьдесят тысяч горожан, которые погибли сразу, притом, что ещё тридцать пять тысяч человек стали жертвами облучения. Эта бомба до сих пор является самым мощным оружием, за всю историю человечества, применение которого осуществлялось для достижения военных целей.

8 место. Trinity (Штучка) – 21 килотонна


Trinity принадлежит пальма первенства среди ядерных бомб, взорванных с целью изучения реакций и происходящих процессов. Ударной волной взрыва было поднято облако на высоту одиннадцать километров. Впечатление, которое было получено учёными, наблюдавшими за первым в истории человека ядерным взрывом, они назвали ошеломляющим. Клубы дыма белого цвета в виде столба, чей диаметр достигал двух километров, стремительно поднялись вверх, где и образовали шапку в виде гриба.

7 место. Baker (Бейкер) – 23 килотонна


Baker – так называли одну из трёх бомб, принявших участие в операции под кодовым названием Crossroads («Перекрёстки), которая проводилась в 1946 году. В ходе испытания изучались последствия взрыва атомных снарядов. В качестве испытуемых использовались животные и суда морского класса. Взрыв был осуществлён на глубине равной двадцати семи километрам. В результате было вытеснено примерно два миллиона тонн воды, что привело к образованию столба высотой больше полукилометра. Бейкером была спровоцирована первая в мире ядерная катастрофа. Радиоактивность острова Бикини, который был выбран для проведения испытаний, достигла такого уровня, что проживать на нём стало невозможно. До 2010 года он считался совершенно необитаемым.

6 место Рея – 955 килотонн


Рея является самой мощной атомной бомбой, испытания которой были произведены Францией в 1971 году. Взрыв этого снаряда был осуществлён на территории атолла Муруроа, используемым в качестве полигона для проведения ядерных взрывов. По 1998 год там произвели испытание более двухсот ядерных снарядов.

5 место. Castle Romeo – 11 мегатонн


Castle Romeo относится к разряду одного из самых мощных ядерных взрывов, из числа проводимых Америкой. Приказ о начале проведения операции был подписан 27 марта 1954 года. Для проведения взрыва в открытый океан была выведена баржа, так как имелись опасения что взрывом бомбы может быть разрушен остров, расположенный неподалёку. Предполагалось, что мощность взрыва не превысит четырёх мегатонн, однако фактически она равнялась одиннадцати мегатонн. В ходе расследования было выявлено, что причиной этого явилось использование дешёвого материала, используемого как термоядерное топливо.

4 место. Устройство Mike – 12 мегатонн


Первоначально устройство Mike (Иви Майк) не обладало никакой ценностью и использовалось как экспериментальная бомба. Ядерное облако от его взрыва поднялось на тридцать семь километров, а шляпка облака в диаметре достигала 161 км. Силу ядерной волны оценили в двенадцать мегатонн. Этой мощности оказалось вполне достаточно, для полного уничтожения всех островков Элугелаб, на которых производились испытания. Там, где они находились, образовалась воронка, в диаметре достигающая двух километров. Её глубина составляла пятьдесят метров. Расстояние, на которое разлетелись осколки, нёсшие радиоактивное заражение, составило пятьдесят километров, если считать от эпицентра.

3 место. Castle Yankee – 13,5 мегатонны


Вторым по мощности взрывом, осуществлённым американскими учёными, был взрыв Castle Yankee. Предварительно проведённые расчёты, позволяли предположить, что мощность устройства не сможет превысить десяти мегатонн, в пересчёте на тротиловый эквивалент. Но фактическая сила взрыва составила тринадцать с половиной мегатонн. Ножка ядерного гриба вытянулась на сорок километров, а шляпка – на шестнадцать. Четырёх дней хватило радиационному облаку чтобы достигнуть города Мехико, расстояние до которого от места взрыва составляло одиннадцать тысяч километров.

2 место. Castle Bravo (Креветка TX-21) – 15 мегатонн


Мощнее бомбу чем Castle Bravo американцы не испытывали. Проведена операция была в 1954 году и повлекла за собой необратимые для экологии последствия. В результате пятнадцати мега-тонного взрыва произошло очень сильное радиационное заражение. Облучению подверглись сотни людей, местом жительства которых были Маршалловы острова. Длина ножки ядерного гриба достигла сорока километров, а шляпка растянулась на сто километров. В результате взрыва, на морском дне образовалась огромная воронка, диаметр которой достигал двух километров. Последствия, спровоцированные испытаниями, заставили ввести ограничения на операции, в которых использовались ядерные снаряды.

1 место. Царь-бомба (АН602) – 58 мегатонн


Мощнее советской Царь-бомбы не было и нет во всём мире. Длина снаряда достигала восьми метров, а диаметр – двух. В 1961 году взрыв этого снаряда произвели на архипелаге под названием Новая Земля. Согласно первоначальным планам мощность АН602 должна была составлять сто мегатонн. Однако учёные, убоявшись глобальности разрушительной силы такого заряда, приняли решение остановиться на пятидесяти восьми мегатоннах. Активацию Царь-бомбы осуществили на высоте четырёх километров. Последствия этого поразили всех. Огненное облако в диаметре достигало десяти километров. Длина «ножки» ядерного гриба составила порядка 67 км, а диаметр шапки накрыл 97 км. Вполне реальная опасность угрожала даже жизни людей, проживающих на расстоянии меньше 400 километров. Отзвуки мощной звуковой волны были слышны на расстоянии в тысячу километров. Поверхность острова, на котором производились испытания стала абсолютно ровной без выступов и каких бы то ни было строений на ней. Сейсмической волне удалось обогнуть Землю три раза, позволив каждому её жителю почувствовать на себе всю мощь, несомую ядерным оружием. Результатом этого испытания стало то, что представителями больше ста стран был подписан договор, запрещающий проведение данного вида испытаний. При этом неважно какая среда выбирается для этого – земля, вода или атмосфера.

ядерный заряд

устройство, в котором осуществляется взрывной процесс освобождения ядерной энергии. Ядерные заряды входят в состав ядерных боеприпасов и делятся на ядерные, энергия взрыва которых обусловлена ядерными цепными реакциями, и термоядерные (устаревшее название - водородные), энергия которых обусловлена термоядерными реакциями синтеза и реакциями деления. В ядерном оружии ядерные заряды помещают в авиационную бомбу, боевую головку ракеты, в торпеду и др. Мощность ядерного взрыва (тротиловый эквивалент) составляет от нескольких сотен т до нескольких десятков Мт тротила. При взрыве поражающее воздействие оказывают ударная волна, световое излучение, проникающая радиация, радиоктивное заражение и электромагнитный импульс.

Ядерный заряд

устройство, содержащее запас ядерной энергии, заключённой в определённых веществах, и приспособления, которые обеспечивают быстрое освобождение энергии для осуществления ядерного взрыва. Я. з. бывают двух типов, один из которых по традиции называется атомным, другой ≈ водородным. Действие Я. з. 1-го типа (атомной бомбы) основано на освобождении ядерной энергии при делении некоторых тяжёлых ядер (урана 235U, плутония 239Pu, см. Ядерный взрыв); действие Я. з. 2-го типа (водородной бомбы) ≈ на термоядерной реакции синтеза ядер гелия из более лёгких ядер (дейтерия, трития или их смеси с 6Li), при которой выделяется примерно в 4 раза больше энергии, чем при распаде одинакового по массе количества делящегося вещества. Испытывались Я. з. мощностью от нескольких кт до нескольких десятков Мт тротилового эквивалента. Мощность Я. з. определяется как количеством содержащегося в заряде делящегося вещества или изотопов водорода, так и его конструкционными особенностями, создающими условия для вступления в ядерную реакцию максимального количества вещества. Важным элементом конструкции Я. з. является инициирующий заряд, создающий сверхкритические условия для делящегося вещества в атомном заряде и необходимую температуру в водородном заряде (в последнем случае в качестве инициирующего заряда применяется атомный заряд). При конструктивном оформлении Я. з. помещают в стальную оболочку, так что общая его масса вместе с инициирующими устройствами составляет обычно от нескольких сотен кг до нескольких т. При употреблении Я. з. в качестве ядерного оружия его для доставки к месту назначения помещают в авиационную бомбу, боевую головку ракеты, в торпеду и т. п.

Я. з. применялись в мирных целях для различных крупномасштабных взрывных работ, при добыче полезных ископаемых и т. д.

Лит. см. при ст. Ядерный взрыв.

· Внутренняя конверсия · Изомерный переход

Ядерная реакция лития-6 с дейтерием 6 Li(d,α)α

Я́дерная реа́кция - процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами , гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии . Спонтанные (происходящие без воздействия налетающих частиц) процессы в ядрах - например, радиоактивный распад - обычно не относят к ядерным реакциям. Для осуществления реакции между двумя или несколькими частицами необходимо, чтобы взаимодействующие частицы (ядра) сблизились на расстояние порядка 10 −15 м, то есть характерного радиуса действия ядерных сил . Ядерные реакции могут происходить как с выделением, так и с поглощением энергии. Реакции первого типа, экзотермические, служат основой ядерной энергетики и являются источником энергии звёзд

Реакции, идущие с поглощением энергии (эндотермические), могут происходить только при условии, что кинетическая энергия сталкивающихся частиц (в системе центра масс) выше определённой величины (порога реакции).

Запись ядерных реакций

Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц .

Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических , то есть, слева записывается сумма исходных частиц, справа - сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

В «химической» записи эта реакция выглядит, как

Каналы и сечения реакций

Типы и квантовое состояние частиц (ядер) до начала реакции определяют входной канал реакции. После завершения реакции совокупность образовавшихся продуктов реакции и их квантовых состояний определяет выходной канал реакции. Реакция полностью характеризуется входным и выходным каналами. Вероятность реакции определяется так называемым поперечным сечением реакции. В лабораторной системе отсчёта (где ядро-мишень покоится) вероятность взаимодействия в единицу времени равна произведению сечения (выраженного в единицах площади) на поток падающих частиц (выраженный в количестве частиц, пересекающих за единицу времени единичную площадку). Если для одного входного канала могут осуществляться несколько выходных каналов, то отношения вероятностей выходных каналов реакции равно отношению их сечений. В ядерной физике сечения реакций обычно выражаются в специальных единицах - барнах , равных 10 −24 с

Типы ядерных реакций

Существует несколько разновидностей ядерных реакций. Некоторые из них происходят на Земле в естественных условиях (например, под действием космических лучей и продуктов естественной радиоактивности), другие протекают в космосе (например, в недрах звёзд и Солнца), третьи - используются человеком для выработки электроэнергии , получения новых химических элементов и т. п. (см. ниже).

Реакции с нейтронами

Применение ядерных реакций

Военное

Энергетика

Синтез новых элементов

Медицина

Научные исследования

Перспективы

Ядерные реакции в природе

Солнце и звёзды

Недра Земли

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Ядерные реакции" в других словарях:

    Превращения ат. ядер при вз ствии с ч цами, в т. ч. с g квантами или друг с другом. Для осуществления Я. р. необходимо сближение ч ц (двух ядер, ядра и нуклона и т. д.) на расстояние 10 13 см. Энергия налетающих положительно заряж. ч ц должна… … Физическая энциклопедия

    ЯДЕРНЫЕ РЕАКЦИИ, превращения атомных ядер при взаимодействии с элементарными частицами, g квантами или друг с другом. Ядерные реакции используются в экспериментальной ядерной физике (исследование свойств элементарных частиц, получение… … Современная энциклопедия