Второй закон термодинамики. Необратимые процессы. Первый закон термодинамики и его применение в физике

Лекция 17

Второй закон термодинамики

Вопросы

    Тепловые двигатели и холодильные машины. Цикл Карно.

    Энтропия, второй закон термодинамики.

3. Реальные газы. Уравнение Ван-дер-Ваальса.

Изотермы реальных газов. Фазовая диаграмма.

4. Внутренняя энергия реального газа.

Эффект Джоуля – Томсона.

1. Тепловые двигатели и холодильные машины. Цикл Карно

Циклом называется круговой процесс, при котором система, пройдя через ряд состояний, возвращается в исходное положение.

Прямой цикл

КПД двигателя

Обратный цикл

холодильныйкоэф-нт

отопительныйкоэф-нт

Цикл Карно – это цикл идеального двигателя, в котором тепло подводится и отводится в изотермических условиях при температурах нагревателяТ 1 и холодильникаТ 2 , переход отТ 1 кТ 2 и обратно осуществляется в адиабатных условиях.

А ц = А 12 + А 23 + А 34 + А 41 (1)

, (2)

, (3)

, (4)

. (5)


. (6)



(7)

Теоремы Карно:

    Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

    Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а зависит только от температур нагревателя и холодильника.

Зависимость КПД цикла Карно от температуры нагревателя (t 2 = 0 o C )

t 1 , o C

t , %

;


, (8)

теорема Карно послужила основанием для установления термоди­нами­чес­кой шкалы температур , такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела.

  1. Энтропия, второй закон термодинамики

Энтропией называется отношение теплоты, подводимой к термодина­мической системе в некотором процессе, к абсолютной температуре этого тела.

(9)

Эта функция была впервые введена С.Карно под названием приведенной теплоты , затем названа Клаузиусом (1865 г.).

, (10)

тепло подводится,

тепло отводится.

Изменение энтропии в частных случаях политропного процесса

1.


изобарный процесс.

(11)

2 .




изотермический процесс

1-й закон термодинамики:


(12)

3. Адиабатный процесс.



процесс изоэнтропный (13)

4. Изохорный процесс.

Второй закон термодинамики устанавливаетнаправление протекания тепловых процессов.

Формулировка немецкого физика Р. Клаузиус а : невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой.

Формулировка английского физика У. Кельвин а : в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Вероятностная формулировка австрийского физика Л.Больцмана : Он предложил рассматривать энтропию как меру статистического беспорядка замкнутой термодинамической системе. Всякое состояние системы c большим беспорядком характеризуется большим беспорядком. Термодинамическая вероятность W состояния системы – это число способов , которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний , осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

S = k ln W , (14)

где k = 1,38·10 –23 Дж/К – постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

(15)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Так как энтропия возрастает только в неравновесном процессе, то ее увеличение происходит до тех пор, пока система не достигнет равновесного состояния. Следовательно, равновесное состояние соответ­ству­ет максимуму энтропии. С этой точки зрения энтропия является мерой близости системы к состоянию равновесия, т.е. к состоянию с мини­маль­ной потенциальной энергией.

3. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовая диаграмма

Поведение реального газа отличается от поведения идеального газа. Так, радиус молекул большинства газов порядка 10 -10 м (1Ǻ), следовательно, объем молекул порядка 410  30 м 3 . В 1 м 3 газа при нормальных условиях содержится 2,710 25 молекул. Таким образом, собственный объем молекул в 1 м 3 при нормальных условиях будет порядка 1,210  4 м 3 , т.е. около 0,0001 от объема, занятого газом.

Любое вещество в зависимости от параметров состояния может находиться в различных агрегатных состояниях :твердом, жидком, газообразном, плазменном .

Нидерландский физик Ван-дер-Ваальс ввел две поправки в уравнение Менделеева-Клапейрона:

1. Учет собственного объема молекулы

Объем одной молекулы: ;

Недоступный объем пары молекул (в расчете на одну молекулу):

учетверенный объем молекулы.

Недоступный объем на все N A молекул одного киломоля:


внутреннее давление; а – постоянная Ван-дер-Ваальса, характери­зую­щая силы межмолекулярного притяжения.

Уравнение Ван-дер-Ваальса для одного моля газа (уравнение состояния реальных газов):

. (16)

Уравнение Ван-дер-Ваальса для произвольной массы газа



. (17)

При фиксированных значениях давления и температуры уравнение (16) имеет три корня относительно V (V 1 , V 2 , V 3)

(V V 1 )(V V 2)(V V 3 ) = 0.

Закономерность переноса тепла от одного объекта к другому рассматривается в утверждении о теплообмене. Весь процесс заключается во внутреннем обмене энергии между объектами, которая называется теплотой.

Правильный процесс направлен только на получение равного состояния, будь оно термическое, механическое или какое-либо ещё. Это действие и содержится во втором законе термодинамики, который имеет совсем немаленькое значение для тепловых машин. Данный закон говорит о том, что тепло может само передвигаться исключительно от объекта с большой температурой к объекту наименьшей температурой. Что бы осуществить обратный цикл, будет затрачиваться некоторая работа. Из чего можно получить заключение второго закона термодинамики: Это действие во время которого теплота сама по себе передвигается от объекта с меньшей теплотой к объекту с наибольшей теплотой не может существовать.

Заметка: Вы хотите обновить свои подоконники, но не знаете в какую компанию обратиться? Попробуйте подоконник меллер купить (http://hoffen.ru/podokonniki-moeller/), ценой и качеством Вы останетесь довольны!

В свое время второй закон термодинамики дает оценку условиям в которых тепло сможет, на сколько хочет обращаться в работу. Любое разомкнутое термодинамическое действие во время нарастания объема, будет происходить работа со знаком плюс.

Формула второго закона термодинамики

В которой L- будет итоговой работой, v1 и v2- собственной изначальный и итоговый объем удельный.
Так как действие расширения бесконечным быть не может, соответственно, и обращение тепла в работу будет этим ограничиваться. Непрерывным это действие будет в случае закрытого кругового движения.

Любое действие происходящее в цикле, происходит с подводом либо отводом тепла dQ, с сопровождением затраты либо совершения работ, упадком или возрастанием энергии внутри тела, а обязательное условие dQ=dU+dL , dg=du+d1 должно выполняться. Ведь оно доказывает что без тепла (dg=0) все действия будут происходить благодаря внутренней энергии системы, а ввод тепла в систему можно определить термодинамикой.

Интеграция в замкнутом контуре:

в которой Qц, Lц - будет теплотой превращенной в работу, L1- L2 - работой совершенной данным телом. Q1 подведенная теплота, Q2- отведенная теплота. А значит, Lц= Qц= Q1-Q2
Тепло можно подвести к телу Q1 только при наличии более горячего тела, а отвод Q2 только при наличии более холодного тела. В случае цикличности процесса понадобиться два источника с разной температурой.

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики:

  1. Кельвина и Планка : Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)
  2. Клаузиуса : Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает. Второй закон связан с понятием энтропии (S) .

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

  • 100% энергии не может быть преобразовано в работу
  • Энтропия может вырабатываться, но не может быть уничтожена

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

  • η = (T h - T c) / T h = 1 - T c / T h
    • η = эффективность
    • T h = верхняя граница (K)
    • T c = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности T c должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, T c должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0 Необратимый процесс
  • Изменение энтропии= 0 Двусторонний процесс (обратимый)
  • Изменение энтропии < 0 Невозможный процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия в системе постоянного объема определяется как:

  • dS = dH / T
    • S = энтропия (кДж/кг*К)
    • H = (кДж/кг) (иногда вместо dH записывают dQ = количество теплоты, сообщенное системе)
    • T = абсолютная температура (K - )

Изменение энтропии системы вызвано изменением содержания тепла в ней. Изменение энтропии равно изменению тепла системы деленной на среднюю абсолютную температуру (T a):

Тепловой цикл Карно. Цикл Карно— идеальный термодинамический цикл.

dS = dH / T a Сумма значений (dH / T) для каждого полного цикла Карно равна 0. Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H.

В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая: Положение 1 --() --> Положение 2 --() --> Положение 3 --(изотермическое сжатие) --> Положение 4 --(адиабатическое сжатие) --> Положение 1

  • Положение 1 - Положение 2: Изотермическое расширение
    • Изотермическое расширение. В начале процесса рабочее тело имеет температуру T h , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q H . При этом объём рабочего тела увеличивается. Q H =∫Tds=T h (S 2 -S 1) =T h ΔS
  • Положение 2 - Положение 3: Адиабатическое расширение
    • Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
  • Положение 3 - Положение 4: Изотермическое сжатие
    • Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру T c , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Q c . Q c =T c (S 2 -S 1)=T c ΔS
  • Положение 4 - Положение 1: Адиабатическое сжатие
    • Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия. Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия). Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики - это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0 - закон неубывания энтропии . Энтропия адиабатически изолированной системы не меняется! 100 o C (373 K) при испарении = 2 258 кДж/кг

  • Изменение удельной энтропии:
  • dS = dH / T a = (2 258 - 0) / ((373 + 373)/2) = 6.054 кДж/кг*К

Полное изменение удельной энтропии испарения воды - это сумма удельной энтропии воды (при 0 o C) плюс удельная энтропия пара (при температуре 100 o C).

Согласно закону сохранения энергии в случае определенных процессов, объем используемой энергии остается неизменным. Для того, чтобы объяснить как энергия может превращаться можно обратиться к понятию второй закон термодинамики . Данный закон подтверждает необратимость некоторых явлений в природе и указывает траекторию энергетических изменений внутри определенных процессов. Закон был сформулирован на основе наблюдений за происходящее в природе, что позволило понять сущность и характер протекания определенных явлений. Все законы физики основаны на опытах и наблюдениях и позволили формулировать определенные заявления на основе происходящего в природе.

В качестве основы для второго закона термодинамики стали необратимые и непроизвольные процессы, которые происходят исключительно в одно направление и/или без постороннего внешнего воздействия. Классические примеры таких процессов это старение, смерть. Без того чтобы обобщать, можно обратиться к более простым процессам: духи распространяются очень быстро при распылении, а обратному соединению они не подаются; также легко превратить яйца в омлет, так что обратно в скорлупу их невозможно вернуть.

Закон работает в изолированных системах, но также может восприниматься как рабочим в случае систем, у которых есть возможность получить тепло извне. В подобных системах энтропия будет расти даже быстрее. Показатель энтропии указывает на систему с характером неупорядоченности, то есть сама энтропия и есть мера беспорядка. Высокий показатель энтропии это высокий уровень хаотичности движения частиц внутри системы. Классический пример этого состояния это превращение льда в воду и его невозможность стать снова льдом самостоятельно. В случае превращения воды в лед должно происходить понижение уровня энтропии.

Говоря о том, что такое термодинамика второй закон необходимо вспомнить, что собой представляет первый закон термодинамики . Он олицетворение всех известных процессов в природе и соблюдается с 100% точностью. Все что может противоречить этому закону, в природе не существует. Данный закон ничего не отрицает, но и не утверждает, а в качестве вспомогательного элемента для разъяснения определенных процессов вступает второй закон термодинамики, всем известный в разных формулировках. Невзирая на то, что закон простой, он часто интерпретируется некорректно.

Второй закон термодинамики появился, как необходимость определить направление физических процессов определенные первым законом. В первую очередь необходимо отметить, что разные виды энергии обладают различной способностью перевоплощаться в другую энергию. Существует ограничение, которое не позволяет внутренней энергии стать механической энергии и это разъясняется законами термодинамики.

Второй закон термодинамики в различных формулировках

Существует несколько формулировок данного закона, которые объясняют одну правду различными способами. Первый кто сформулировал его это Р. Клаузиус, после последовали формулировки Томсона, Больцмана, Кельвина. Наличие различных интерпретации данного закона позволяет его понять лучше. Поэтому будет не лишним ознакомиться с каждым из них.

1. Переход тепла от тела с невысокой температурой к другому телу с более высоким уровнем температуры невозможен. (Клаузиус)

2. Любой процесс является невозможным, если для его осуществления должно использоваться тепло взятое от постороннего тела. (Томсон)
3. Состояние энтропии не может стать меньше в полностью закрытых системах, которые не получают никакую внешнюю энергию. (Больцман)

4. Периодические процессы, происходящие исключительно за счет теплоты единого источника являются невозможными. Создание вечного теплового двигателя, который совершал бы механические процессы за счет потери тепла любого тела, является невозможным. (Кельвин).

Согласно всем формулировкам можно условно определить, что процессы можно называть необратимыми, если механическая энергия проходит путь модификации во внутренней энергии при наличии процесса трения. Отсутствие параметра трение позволило бы в ином случае получать обратное протекание процессов. Обратные процессы можно считать абстрактными с учетом того, что протекают они, как правило, в присутствии реакции теплообмена и трения.

Второй закон термодинамики формулы

Существуют определенные уравнения, которые помогают рассматривать второй закон термодинамики согласно более конкретным данным. Основное уравнение это уравнение Больцмана, которое позволяет вычислять параметр энтропия.

S = Q/ T

С целью понять, что собой представляет параметр энтропия можно рассмотреть пример с системой, в которой два тела с не одинаковой температурой будут обмениваться теплом, пока температура обоих тел не сравнится. Тепло будет передаваться исключительно от тела с температурой выше к более холодному. Тело, которое отдает тепло, получает пониженный уровень энтропии, только не по тем параметрам, по которым увеличиться энтропия тела, получившее это тепло. Энтропия обеих тел по итогам после процесса передачи тепла будет выше для всей системы. Это указывает, что данная величина стремиться к энному максимуму для всех закрытых систем. Также неопровержимо заявление относительно того, что действие по передаче тепла будет продолжать происходить самопроизвольно, пока будут существовать перепады температуры.

Основные положения второго закона термодинамики

Первый закон термодинамики, являясь частным случаем все общего закона сохранения и превращения энергии, утверждает что теплота может превращаться в работу, а работа - в теплоту не устанавливая условий, при которых возможны эти превращения.

Он совершенно не рассматривает вопроса о направлении теп­лового процесса, а не зная этого направления, нельзя предска­зать его характер и результаты.

Например, первый закон не решает вопроса о том, будет ли совершаться переход теплоты от нагретого тела к холодному или обратно. Повседневные наблюдения и опыты показывают, что теплота сама собой может переходить только от нагретых тел к более холодным. Передача теплоты от нагретого тела к среде будет происходить до полного температурного равновесия с окружающей средой. Только за счет затраты работы можно изменить направление движения теплоты.

Это свойство теплоты резко отличает ее от работы.

Работа, как и все другие виды энергии, участвующие в каком-либо процессе, легко и полностью превращается в теплоту. Пол­ная превращаемость работы в теплоту была известна человеку в глубокой древности, когда он добывал огонь трением двух кусков дерева. Процессы превращения работы в теплоту происходят в природе непрерывно: трение, удар, торможение и т. д.

Совершенно иначе ведет себя теплота, например, в тепловых машинах. Превращение теплоты в работу происходит только при наличии разности температур между источником теплоты и теплоприемником. При этом вся теплота не может быть превращена в работу.

Из сказанного следует, что между преобразованием теплоты в работу и обратно существует глубокое различие. Закон, позво­ляющий указать направление теплового потока и устанавливаю­щий максимально возможный предел превращения теплоты в ра­боту в тепловых машинах, представляет собой новый закон, полу­ченный из опыта. Это и есть второй закон термодинамики, имею­щий общее значение для всех тепловых процессов. Второй закон термодинамики не ограничивается рамками техники; он приме­няется в физике, химии, биологии, астрономии и др.

В 1824 г. Сади Карно, французский инженер и ученый, в своих рассуждениях о движущей силе огня изложил сущность второго закона.

В 50-х годах прошлого столетия Клаузиусом была дана наи­более общая и современная формулировка второго закона термодинамики в виде следующего постулата: «Теплота не может пере­ходить от холодного тела к более нагретому сама собой даровым процессом (без компенсации) ». Постулат Клаузиуса должен рас­сматриваться как закон экспериментальный, полученный из наблю­дений над окружающей природой. Заключение Клаузиуса было сделано применительно к области техники, но оказалось, что вто­рой закон в отношении физических и химических явлений также правилен. Постулат Клаузиуса, как и все другие формулировки второго закона, выражает собой один из основных, но не абсолют­ных законов природы, так как он был сформулирован примени­тельно к объектам, имеющим конечные размеры в окружающих нас земных условиях.

Одновременно с Клаузиусом в 1851 г. Томсоном была выска­зана другая формулировка второго, закона термодинамики, из ко­торой следует, что не вся теплота, полученная от теплоотдатчика, может перейти в работу, а только некоторая ее часть.

Часть теп­лоты должна перейти в теплоприемник.

Следовательно, для получения работы необходимо иметь источ­ник теплоты с высокой температурой, или теплоотдатчик , и источник теплоты с низкой температурой, или теплоприемник . Кроме того, постулат Томсона показывает, что построить вечный дви­гатель, который бы создавал работу за счет использования только одной внутренней энергии морей, океанов, воздуха, не представ­ляется возможным. Это положение можно сформулировать как второй закон термодинамики: «Осуществление вечного двигателя второго рода невозможно» . Под вечным двигателем второго, рода подразумевается такой двигатель, который спосо­бен целиком превращать в работу всю теплоту, полученную толь­ко от одного источника.

Кроме изложенных имеется еще несколько формулировок вто­рого закона термодинамики, которые, по существу, не вносят чего-либо нового и поэтому не приводятся.

Энтропия.

Второй Закон Термодинамики, как и Первый (Закон сохранения энергии) установлен эмпирическим путем. Впервые его сформулировал Клаузиус: "теплота сама собой переходит лишь от тела с большей температурой к телу с меньшей температурой и не может самопроизвольно переходить в обратном направлении".

Другая формулировка: все самопроизвольные процессы в природе идут с увеличением энтропии . (Энтропия - мера хаотичности, неупорядоченности системы). Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с большей температурой к телу с меньшей, до тех пор, пока температуры обоих тел не выровняются. При этом от одного тела к другому будет передано определенное количество тепла dQ. Но энтропия при этом у первого тела уменьшится на меньшую величину, чем она увеличится у второго тела, которое принимает теплоту , так как, по определению, dS=dQ/T (температура в знаменателе!). То есть, в результате этого самопроизвольного процесса энтропия системы из двух тел станет больше суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с высокой температурой к телу с более низкой температурой привел к тому, что энтропия системы из этих двух тел увеличилась!

Важнейшие свойства энтропии замкнутых систем:

а) Энтропия замкнутой системы, совершающей обратимый цикл Карно, не изменяется:

ΔS обр =0, S=const.

б) Энтропия замкнутой системы, совершающей необратимый цикл Карно, возрастает:

ΔS необр >0.

в) Энтропия замкнутой системы при любых, происходящих в ней процессах, не убывает: ΔS≥0.

При элементарном изменении состояния замкнутой системы энтропия не убывает: dS≥0. Знак равенства относится к обратимым процессам, а знак неравенства к необратимым. Пункт в) является одной из формулировок второго закона (начала) термодинамики. Для произвольного процесса, происходящего в термодинамической системе, справедливо соотношение:

где Т - температура того тела, которое сообщает. Термодинамической системе энергию δQ в процессе бесконечно малого изменения состояния системы. Используя для δQ первое начало термодинамики, предыдущее неравенство можно переписать в форме, объединяющей первое и второе начало термодинамики: TdS ≥ dU+δA.

Свойства энтропии.

1. Итак, энтропия - функция состояния. Если процесс проводят вдоль адиабат, то энтропия системы не меняется. Значит адиабаты -это одновременно и изоэнтропы. Каждой более "высоко" расположенной адиабате (изоэнтропе) отвечает большее значение энтропии. В этом легко убедиться, проведя изотермический процесс между точками 1 и 2, лежащими на разных адиабатах (*см. рис.). В этом процессе Т=const, поэтому S2-S1=Q/T. Для идеального газа Q равно работе А, совершаемой системой. А так как А>0, значит S 2 >S 1 . Таким образом, зная, как выглядит система адиабат. Можно легко ответить на вопрос о приращении энтропии при проведении любого процесса между интересующими нас равновесными состояниями 1 и 2. Энтропия- величина аддитивная: энтропия макросистемы равна сумме энтропий ее отдельных частей.

3. Одно из важнейших свойств энтропии заключается в том, что энтропия замкнутой (т.е. теплоизолированной) макросистемы не уменьшается - она либо возрастает, либо остается постоянной. Если же система не замкнута, то ее энтропия может, как увеличиваться, так и уменьшаться.

Принцип возрастания энтропии замкнутых систем представляет собой еще одну формулировку второго начала термодинамики. Величина возрастания энтропии в замкнутой макросистеме может служить мерой необратимости процессов, протекающих в системе. В предельном случае, когда процессы имеют обратимый характер, энтропия замкнутой макросистемы не меняется.

Физический смысл имеет разность ΔS энтропии в двух состояниях системы. Чтобы определить изменение энтропии в случае необратимого перехода системы из одного состояния в другое, нужно придумать какой-нибудь обратимый процесс, связывающий начальное и конечное состояния, и найти приведенное тепло, полученное системой при таком переходе.

Рис. 3.12.4 - Необратимый процесс расширения газа «в пустоту» в отсутствие теплообмена

Только начальное и конечное состояния газа в этом процессе являются равновесными, и их можно изобразить на диаграмме (p, V). Точки (a) и (b), соответствующие этим состояниям, лежат на одной изотерме. Для вычисления изменения ΔS энтропии можно рассмотреть обратимый изотермический переход из (a) в (b). Поскольку при изотермическом расширении газ получает некоторое количество теплоты от окружающих тел Q > 0, можно сделать вывод, что при необратимом расширении газа энтропия возросла: ΔS > 0.

Другой пример необратимого процесса – теплообмен при конечной разности температур. На рис. 3.12.5 изображены два тела, заключенные в адиабатическую оболочку. Начальные температуры тел T 1 и T 2 < T 1 . При теплообмене температуры тел постепенно выравниваются. Более теплое тело отдает некоторое количество теплоты, а более холодное – получает. Приведенное тепло, получаемое холодным телом, превосходит по модулю приведенное тепло, отдаваемое горячим телом. Отсюда следует, что изменение энтропии замкнутой системы в необратимом процессе теплообмена ΔS > 0.

Рост энтропии является общим свойством всех самопроизвольно протекающих необратимых процессов в изолированных термодинамических системах. При обратимых процессах в изолированных системах энтропия не изменяется: ΔS≥0. Это соотношение принято называть законом возрастания энтропии. При любых процессах, протекающих в термодинамических изолированных системах, энтропия либо остается неизменной, либо увеличивается.

Таким образом, энтропия указывает направление самопроизвольно протекающих процессов. Рост энтропии указывает на приближение системы к состоянию термодинамического равновесия. В состоянии равновесия энтропия принимает максимальное значение. Закон возрастания энтропии можно принять в качестве еще одной формулировки второго закона термодинамики.

В 1878 году Л. Больцман дал вероятностную трактовку понятия энтропии. Он предложил рассматривать энтропию как меру статистического беспорядка в замкнутой термодинамической системе. Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

Всякое состояние макроскопической системы, содержащей большое число частиц, может быть реализовано многими способами. Термодинамическая вероятность W состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

Например, если в сосуде находится 1 моль газа, то возможно огромное число N способов размещения молекулы по двум половинкам сосуда: где– число Авогадро. Каждый из них является микросостоянием.

Только одно из микросостояний соответствует случаю, когда все молекулы соберутся в одной половинке (например, правой) сосуда. Вероятность такого события практически равна нулю. Наибольшее число микросостояний соответствует равновесному состоянию, при котором молекулы равномерно распределены по всему объему. Поэтому равновесное состояние является наиболее вероятным. С другой стороны равновесное состояние является состоянием наибольшего беспорядка в термодинамической системе и состоянием с максимальной энтропией.

Согласно Больцману, энтропия S системы и термодинамическая вероятность W связаны между собой следующим образом: S=klnW, где k = 1,38·10 –23 Дж/К – постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Такие отклонения называются флуктуациями. В системах, содержащих большое число частиц, значительные отклонения от состояния равновесия имеют чрезвычайно малую вероятность.

Круговые термодинамические процессы, или циклы

В рассмотренных ранее термодинамических процессах изуча­ть вопросы получения работы или вследствие подведенной теплоты, или вследствие изменения внутренней энергии рабочего тела, или одновременно вследствие того и другого. При однократном расширении газа в цилиндре можно получить лишь ограничен количество работы. Действительно, при любом процессе рения газа в цилиндре все же наступит момент, когда температура и давление рабочего тела станут равными температуре и давлению окружающей среды и на этом прекратится получение работы.

Следовательно, для повторного получения, работы необходимо в процессе сжатия возвратить рабочее тело в первоначальное состояние.

Из рисунка 8 следует, что если рабочее тело расширяется по кривой 1-3-2 то оно производит работу, изображаемую на рv-диаграмме пл. 13245. По достижении точки 2 рабочее тело должно быть возвращено в начальное состояние (в точку 1), для того чтобы оно снова могло произвести работу. Процесс возвращения тела в начальное состояние может быть осуществлен тремя путями.

Рисунок 8 – Круговые процессы.

1.Кривая сжатия 2-3-1 совпадает с кривой расширения 1-3-2. В таком процессе вся полученная при расширении работа (пл.13245) равна работе сжатия (пл. 23154) и положитель­ная работа равна нулю. Кривая сжатия 2-6-1 располагается над линией расширения 1-3-2; .при этом на сжатие затрачивается большее количество работы (пл. 51624), чем ее будет получено при расширении (пл. 51324).

Кривая сжатия-2-7-1 располагается под линией расширения 1-3-2. В этом круговом процессе работа расширения (пл. 51324) будет больше работы сжатия (пл. 51724). В результате вовне будет отдана положительная работа, изображаемая пл. 13271 внутри замкнутой линии кругового процесса, или цикла.

Повторяя цикл неограниченное число раз, можно за счет под­водимой теплоты получить любое количество работы.

Цикл, в результате которого получается положительная рабо­та, называется прямым циклом или циклом теплового двига­теля ; в нем работа расширения больше работы сжатия. Цикл, в результате которого расходуется работа, называется обратным , в нем работа сжатия больше работы расширения. По обратным циклам работают холодильные установки.

Циклы бывают обратимые и необратимые. Цикл, состоящий из равновесных обратимых процессов, называют обратимым . Рабо­чее тело в таком цикле не должно подвергаться химическим изме­нениям.

Если хоть один из процессов, входящих в состав цикла, явля­ется необратимым, то и весь цикл будет необратимым.

Результаты исследований идеальных циклов могут быть перенесены на действительные, необратимые процессы реальных машин путем введения опытных поправочных коэффициентов.

Термический кпд и холодильный коэффициент циклов

Исследование любого обратимого цикла доказывает, что для осуществления необходимо в каждой точке прямого процесса подводить теплоту от теплоотдатчиков к рабочему телу при бесконечно малой разности температур и отводить теплоту от рабочего тела к теплоприемникам также при бесконечно малой разности температур. При этом температура двух соседних источников теплоты должна отличаться на бесконечно малую величину, так как иначе при конечной разности температур процессы передачи теплоты будут необратимы: Следовательно, для создания тепло­вого двигателя необходимо иметь бесконечно большое количество теплоотдатчиков, теплоприемников и рабочее тело.

На пути 1-3-2 (рисунок 8) рабочее тело совершает удельную работу расширения , численно равную пл. 513245, за счет удель­ного количества теплоты , полученной от теплоотдатчиков, и частично за счет своей внутренней энергии. На пути 2-7-1 затра­чивается удельная работа сжатия , численно равная пл. 427154, часть которой в виде удельного количества теплоты отводится в теплоприемники, а другая часть расходуется на увеличение внутренней энергии рабочего тела до начального состояния. В ре­зультате осуществления прямого цикла будет вовне отдана поло­жительная удельная работа, равная разности между работой рас­ширения и сжатия. Эта работа .

Соотношение между удельными количествами теплоты и и положительной удельной работой определяется первым зако­ном термодинамики.

Так как в цикле конечное состояние тела совпадает с начальным, то внутренняя энергия рабочего тела не изменяется и поэтому

Отношение удельного количества теплоты, превращенного в положительную удельную работу за один цикл, ко всему удель­ному количеству теплоты, подведенному к рабочему телу, назы­вается термическим коэффициентом полезного действия прямого

цикла :

Значение является показателем совершенства цикла теплового двигателя. Чем больше , тем большая часть подведенной теплоты превращается в полезную работу. Величина термического к.п.д. цикла всегда меньше единицы и мог бы быть равна единице, если бы или , чего осуществить нельзя.

Полученное уравнение (62) показывает, что всю подведенную в цикле к рабочему телу теплоту полностью превратить в работу невозможно без отвода некоторого количества теплоты в теплоприемник.

Таким образом, основная мысль Карно оказалась верной, а именно: в замкнутом круговом процессе теплота может превратиться в механическую работу только при наличии разности температур между теплоотдатчиками и теплоприемниками. Чем больше эта разность, тем выше к.п.д. цикла теплового двигателя.

Рассмотрим теперь обратный цикл, который проходит в направлении против часовой стрелки и изображается на pv-диаграмме пл. 13261. Расширение рабочего тела в этом цикле совершается при более низкой температуре, чем сжатие, и работа расширения (пл. 132451) получается меньше работы сжатия (пл. 162451). Такой цикл может быть осуществлен только при затрате внешней работы.

В обратном цикле от теплоприемников подводится к рабочем телу теплота и затрачивается удельная работа , переходящая в равное количество теплоты, которые вместе передаются теплоотдатчикам:

Без затраты работы сам собой такой переход невозможен.

Степень совершенства обратного цикла определяется так назы­ваемым холодильным коэффициентом цикла .

Холодильный коэффициент показывает, какое количество теп­лоты отнимается от теплоприемника при затрате одной единицы работы. Его величина, как правило, больше единицы.

Циклы Карно.

Прямой обратимый цикл Карно

Обратимый цикл, осуществленный между двумя источниками теплоты постоянной температуры, должен состоять из двух обратимых изотермных и двух обратимых адиабатных процессов.

Это цикл впервые был рассмотрен Сади Карно в его работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу», опубликованный в 1824 г. Для лучшего уяснения порядка осуществления данного цикла представим себе тепловую машину, ци­линдр которой может быть по мере надобности как абсолютно тепло­проводным, так и абсолютно нете­плопроводным. Пусть в первом по­ложении поршня начальные пара­метры рабочего тела а темпе­ратура равна температуре теплоотдатчика. Если в этот момент цилиндр будет абсолютно теплопроводным и если его привести в соприкосновение с теплоотдатчиком бесконечно большой энергоемкости, сообщив рабочему телу теплоту по изотерме 1-2, то газ расширится до точки 2 и совершит работу. Параметры точки 2: От точ­ки 2 цилиндр должен быть абсолютно нетеплопроводным. Рабочее тело с температурой Т 1 , расширяясь по адиабате 2-3 до темпера­туры теплоприемника Т 2 , совершит работу. Параметры точки 3: . От точки 3 делаем цилиндр абсолютно теплопроводным. Сжимая рабочее тело по изотерме 3-4, одновременно отводим теплоту в теплоприемник. В конце изотер­мического сжатия параметры рабочего тела будут . От точки 4 в абсолютно нетеплопроводном цилиндре адиабатным про­цессом сжатия 4-1 рабочее тело возвращается в первоначальное состояние.

Таким образом, за весь цикл рабочему телу от теплоотдатчика было сообщена теплота и отведена в теплоприемник теплота .

Термический к.п.д. цикла

Подведенную теплоту по изотерме 1-2 опре­деляем так:

Абсолютное значение отведенной теплоты по изотерме 3-4 находим так:

Подставляя найденные значения и в уравнение для термического к.п.д., получаем

Для адиабатного процесса расширения и сжатия соответственно имеем

и

Следовательно, уравнение термического к.п.д. цикла Карно после сокращения принимает вид

Термический к.п.д. обратимого цикла Карно зависит только от абсолютных температур теплоотдатчика и теплоприемника. Он будет тем больше, чем выше температура теплоотдатчика и чем ниже температура теплоприемника. Термический к.п.д. цикла Кар­но всегда меньше единицы, так как для получения к.п.д., равного единице, необходимо, чтобы Т 2 =0 или Т 1 = ∞, что неосуществимо. Термический к.п.д. цикла Карно не зависит от природы рабочего тела и при Т 2 -Т 1 равен нулю, т. е. если тела находятся в тепло­вом равновесии, то невозможно теплоту превратить в работу.

Термический к.п.д. цикла Карно имеет наибольшее значение
по сравнению с к.п.д. любого цикла, осуществляемого в одном и
том же интервале температур. Поэтому сравнение
термических к.п.д. любого цикла и цикла Карно позволяет делать
заключение о степени совершенства использования теплоты в машине, работающей по данному циклу.

В реальных двигателях цикл Карно не осуществляется вследствие практических
трудностей. Однако теоретическое и прак­тическое значение цикла Карно весьма ве­лико. Он служит эталоном при оценке со­вершенства любых циклов тепловых дви­гателей. .

Обратимый цикл Карно, осуществлен­ный в интервале температур Т 1 и Т 2 , изображается на Ts-диаграмме прямоугольником 1234 (рисунок 9).

Рисунок 9 – Обратимый цикл Карно.

Обратный обратимый цикл Карно

Цикл Карно может протекать не только в прямом, но и обратном направлении. На рисунке 10 представлен обратный цикл Карно. Цикл состоит из обратимых процессов и в целом является обратимым.

Рисунок 10 – Обратный цикл Карно.

Рабочее тело от начальной точки 1 расширяется по адиабате 1-4 без теплообмена с внешней средой, при этом температура Т 1 выдается до Т 2 . Затем следует дальнейшее расширение газа по изотерме 4-3 с подводом теплоты , которое отнимается от источника с низкой температурой Т 2 . Далее следует адиабатное сжатие 3-2 с увеличением температуры от Т 2 до Т 1 . В течение последнего процесса происходит изотермное сжатие 2-1, во время которого к теплоприемнику с высокой температурой отводится теплота .

Рассматривая обратный цикл в целом, можно отметить, что затра­чиваемая внешняя работа сжатия больше работы расширения на вели­чину пл. 14321 внутри замкнутой линии цикла. Эта работа превраща­ется в теплоту и передается вместе с теплотой источнику с темпера­турой Т 1 . Таким образом, затратив на осуществление обратного цикла удельную работу , можно перенести от теплоприемника к теплоотдатчику

единиц теплоты. При этом теплота, получаемая теплоприемником, равна

Машина, работающая по обратному циклу, называется холо­дильной машиной. Из рассмотрения обратного цикла Карно можно сделать вывод, что передача теплоты от источника с низкой температурой к источнику с высокой температурой, как это следует из постулата Клаузиуса, обязательно требует затраты энергии (не может совер­шаться даровым процессом без компенсации).

Характеристикой эффективности холодильных машин является холодильный коэффициент

для обратного цикла Карно

(64)

Холодильный коэффициент обратного цикла Карно зависит от абсолютных температур и источников теплоты и обладает Наибольшим значением по сравнению с холодильными коэффициентами других циклов, протекающих в тех же пределах темпе­ратур

После рассмотрения прямого и обратного циклов Карно можно несколько подробнее объяснить формулировку второго закона термодинамики, данную Клаузиусом.

Клаузиус показал, что все естественные процессы, протекающие в природе, являются процессами самопроизвольными (их иногда называют положительными (или некомпенсированными процессами) и не могут «сами собой» без компенсации протека в обратном направлении.

К самопроизвольным процессам принадлежат: переход теплоты от более нагретого тела к менее нагретому; превращение работы в теплоту; взаимная диффузия жидкостей или газов; расширение газа в пустоту и т. п.

К не самопроизвольным процессам относятся процессы, противоположные вышеприведенным самопроизвольным процессам: переход теплоты от менее нагретого тела к более нагретому; превращение теплоты в работу; разделение на составные части диффундировавших друг в друге веществ и т. п. Процессы не самопроизвольные возможны, но они никогда не протекают «сами собой» без компенсации.

Какие же процессы должны сопровождать не самопроизвольные процессы, чтобы сделать их возможными? Тщательное и всестороннее изучение окружающих нас физических явлений пока­зало, что не самопроизвольные процессы только тогда возможны, когда они сопровождаются процессами самопроизвольными. Сле­довательно, самопроизвольный процесс может произойти «сам со­бой», не самопроизвольный - только вместе с самопроизвольным. Поэтому, например, в любом прямом круговом процессе не самопроизвольный процесс превращения теплоты в работу компенси­руется одновременным самопроизвольным процессом передачи части подведенной теплоты от теплоотдатчика к теплоприемнику. .

При осуществлении обратного цикла не самопроизвольный процесс переноса теплоты от менее нагретого тела к более нагретому, также возможен, но здесь он компенсируется самопроизвольным процессом превращения затраченной извне работы в теплоту .

Таким, образом, всякий не самопроизвольный процесс может только тогда произойти, когда он сопровождается компенсирующим самопроизвольным процессом.

Теорема Карно

При выводе термического к.п.д. обратимого цикла Карно были использованы соотношения, справедливые только для идеального газа. Поэтому, для того чтобы можно было распространить все сказанное о цикле Карно на любые реальные газы и пары, необходимо доказать, что термический к.п.д. цикла Карно не зависит от свойств вещества, с помощью которого осуществляется цикл. Это и является содержанием теоремы Карно.

Теплоты. Затраченная работа

Такой же результат получается, если предположить, что . Поэтому остается один возможный вариант, когда , а это значит, что и , т. е. действительно термический к.п.д. обратимого цикла Карно не зависит от свойств рабочего тела и является только функцией температур теплоотдатчика и теплоприемника.

Лекция № 6. Предмет и задачи теории теплообмена

Согласно второму закону термодинамики самопроизвольный процесс переноса теплоты в пространстве возникает под действием разности температур и направлен в сторону уменьшения температуры. Закономерности переноса теплоты и количественные характеристики этого процесса являются предметом и задачей исследования теории теплообмена (теплопередачи).

Учение о теплопередаче – это учение о процессах распростра­нения тепла. Отличительной их особенностью является универ­сальность, так как они имеют весьма большое значение почти во всех отраслях техники.

Тепловая энергия пе­редается, как и любая другая энергия, в направлении от высше­го потенциала к низшему. Так как потенциалом тепловой энер­гии является температура , то процесс распростра­нения теп­ла тесно связан с распределением температур, т. е. с так называемым температурным полем. Температурным полем называется совокупность значений температур в прост­ранстве и времени. В общем случае температура t в любой точ­ке пространства является функцией координат х, у, z и времени τ и, следовательно, уравнение температурного поля будет

t = f(x, y, z, τ ). (65)

Поле, в котором температура меняется с изменением времени, называется неустановившимся, или нестационарным. Если температура во времени не меняется, то поле на­зывается установившимся, или стационарным , и его уравнение будет

t = f(x,y,z). (66)

Наиболее простым случаем температурного поля является ста­ционарное одномерное поле, уравнение которого имеет вид

t = f(x) . (67)

Передача тепла, происходящая в условиях нестационарного тем­пературного поля, называется теплопередачей при не­стационарном режиме , а в условиях стационарного по­ля теплопередачей при стационарном режиме.

Процесс теплообмена – сложный процесс, состоящий из трех элементарных видов теплообмена – теплопроводности, конвекции и теплового излучения (луче­испускания) (рисунок 12).

а – теплопроводность; б – конвекция; а – излучение

Рисунок 12 – Разновидности теплопе­редачи