Тромбоциты: строение, функции, норма. Гемостаз. Факторы свёртывания крови. Тромбоциты Тромбоциты строение

Рассмотрим детальнее, какое строение имеют тромбоциты.

Тромбоциты, или кровяные пластинки, – это безъядерные клетки, которые своим появлением обязаны мегакариоциту костного мозга.

Строение тромбоцита напоминает уплощенную и выпуклую с двух сторон линзу овальной или круглой формы.

При различных раздражениях либо повреждении сосуда они резко видоизменяются. Увеличиваются в размере, как бы «набухают».

Форма становится мешотчатой с многочисленными нитчатыми отростками –псевдоподиями. Напоминает осьминога. Такой метаморфозе особенно легко подвержены молодые тромбоциты.

Обычно тромбоцитов в крови человека циркулирует от 180 до 320 г\л. Период жизни короткий – 10 дней.

Большая часть осуществляет основные функции, а третья часть находится в «запасе» в селезенке. Значительную долю утилизирует эндотелий сосудов и небольшое количество– селезенка.

Особенности строения тромбоцитов.

По строению тромбоцит представляет собой сложный комплекс. Структура напоминает систему микротрубочек, гранул, различных зон, мембран и органелл.

Молодые клетки крупные, затем по мере созревания, они уменьшаются и приобретают нормальный размер - 1,5 до 3,5 мкм. Как и эритроцит не имеют ядра и меньше его в три раза.

Благодаря электронной микроскопии удалось установить, какие имеет тромбоцит особенности строения. На разрезе видно, что пластинка насчитывает нескольких слоев: периферическая зона, золь-гель и внутриклеточные органеллы. Каждый имеет свои функции и предназначение.

Строение тромбоцитов в крови может видоизменяться, из овальных клеток они превращаются в звезчатые, при помощи таких выростов клетка соединяется с поврежденной тканью и обеспечивает «ремонт» дефекта внутренней выстилки сосуда.

  1. Внешний слой. Обеспечивает уникальные особенности тромбоцитов: способность образовывать псевдоподии –своеобразные выросты. С их помощью тромбоциты соединяются друг с другом - агрегируют. Следующий этап - адгезия, прилипание к поврежденной стенке сосуда. Этот слой состоит из мембраны и надмембранной оболочки (гликокаликс).
  2. Белково-липидная мембрана имеет три слоя. Содержит белки (сиалогликопротеины), ферменты (гликозилтрансферазы, аденилциклаза), сократительный белок–тромбостенин (актомиозин) и фосфолипидные микромембраны, активирующие тканевой фактор (тромбопластин). В основе наследственных болезней (тромбоцитопатий) и дисфункции кровяных пластинок лежит дефицит именно этих факторов.
  3. Надмембранный белковый слой (гликокаликс) принимает участие в активации тромбоцитов. Его толщина 10–20 нм. В нем концентрируются основные плазменные белки. Этот слой играет важную роль в осуществлении локальных реакций свертывания. Потому что в нем имеются специальные рецепторы для улавливания факторов свертывания крови. Такой способности лишены другие клетки.

Сама оболочка способна образовывать глубокие складки и каналы, которые уходят в глубь клетки и пронизывают ее в различных направлениях. Благодаря такой особенности строения тромбоцитов человека, клетки имеют вид губчатой структуры.

Это позволяет хорошо контактировать с глубокими слоями и выделять в атмосферу факторы, важные для гемостаза. Этот процесс называют реакцией высвобождения.

Гель – зона или матрикс. Состоит из мембранных вагинаций (впячиваний) и различных каналов, содержащих плотные гранулы (альфа, бета и гликогеновые). Во время свертывания крови они выделяются в окружающую среду и участвуют в дальнейшем процессе. Это место накопления АТФ и АДФ, серотонина, кальция и антигепаринового фактора.

В процессе реакций тромбоцит меняет свое строение полностью. Он преображается и становится похожим на звезду, что позволяет ему осуществлять дальнейшие действия.

Микротрубочки, которые примыкают к оболочке клетки, содержат тромбостенин или сократительный белок. Под его действием тромбоцит меняет форму, уплотняется и образует пробки.

Какую форму имеют тромбоциты

Какую форму имеют тромбоциты – это можно увидеть при многократном увеличении под микроскопом. Они разные по величине и продолжительности жизни.

Существует пять форм:

  1. Зрелые – это 90% тромбоцитов;
  2. Незрелые (юные) формы – крупные. Появляются тогда, когда костный мозг усиленно продуцирует новые клетки. Что бывает при массивной кровопотере.
  3. Дегенеративные тромбоциты – мелкие измененные тромбоциты, их наличие также свидетельствует о нарушении кроветворения.
  4. Старые формы – имеют различные размеры и форму; их появление позволяет заподозрить злокачественную опухоль;
  5. Формы раздражения – результат нарушения образования тромбоцита из мегакариоцита в костном мозге. Они огромного размера и свидетельствуют о заболеваниях крови.

Функции и строение тромбоцитов (эритроцитов, лейкоцитов) в крови

Тромбоциты – это элементы крови, которые принимают участие в процессе остановки кровотечения. Тромбоциты являются мелкими безъядерными клетками. Мегакариоциты образуют тромбоциты в костном мозге. Функции тромбоцитов сильно отражаются на состоянии человеческого здоровья. Далее, давайте разберем, какое имеют тромбоциты строение и функции, которые они выполняют попробуем описать подробно.

Строение тромбоцитов по своей структуре: тромбоциты или кровяные пластинки не имеют ядра, но имеют много гранул различного строения. Могут иметь овальную или округлую форму, диаметром 2-4 мкм.

Когда кровяные пластинки активируется, то начинают образовываться «выросты» в форме звездочек. Тромбоциты образовываются по-особенному, не так, как другие клетки.

Самая большая клетка костного мозга – это мегакариоцит, который создается из мегакариобласта. У мегакариоцита есть большого размера цитоплазма. В ней созревают разделительные мембраны. Таким образом, цитоплазма делится на маленькие кусочки, которые и являются самостоятельными тромбоцитами. Созревание данных клеток происходит в костном мозге в течение 7 дней. После этого они поступают в кровеносные сосуды, в которых находятся до 11 дней.

В зависимости от своих размеров в диаметре, тромбоциты подразделяются на: микроформы, нормоформы, макроформы, мегаформы.

Функции тромбоцитов в крови очень важны для человеческого организма в целом. Самая основная функция тромбоцитов – это поддержание целостности стенок сосудов, а также ее восстановление при повреждениях.

Назначение тромбоцитов

Эти маленькие клетки образовывают тромб, который останавливает кровотечение. При разрыве сосудистой стенки и кровотечении именно данные клетки начинают склеиваться между собой и образовывать тромб. Такой тромб закрывает повреждение в стенке сосуда, чем помогает остановить кровотечение.

То есть, если человек порежется или проколет сосуд, то первыми на помощь придут тромбоциты, которые закроют открытую рану, а это значит, кровотечение прекратится.

Еще одной важной функцией тромбоцитов является насыщение кровеносных сосудов питательными веществами. Благодаря наличию серотонина, проницаемость сосудов поддерживается на нормальном уровне.

После ознакомления со строением и функциями тромбоцитов становится ясно, что недостаточное количество данных клеток в крови довольно опасно для здоровья человека. Потому что в таком случае, человеческий организм не защищен от кровотечений.

Сосуды же, к которым не поступает питание, теряют свою эластичность и становятся очень хрупкими. Это может привести к их нарушению даже при резких движениях. В состав крови входят еще такие клетки, как эритроциты и лейкоциты. Эритроциты являются красными кровяными тельцами, в основу которых входит гемоглобин. Далее, более подробно каковы функции эритроцитов лейкоцитов и тромбоцитов.

Функции эритроцитов

Функции эритроцитов заключаются в следующем:

  1. Дыхательная функция - эритроциты переносят кислород от легких к тканям, а затем от них к легким доставляют углекислый газ.
  2. Функция сбалансированности - данные клетки регулируют кислотно-щелочной баланс крови.
  3. Питательная функция - эритроциты переносят аминокислоты, липиды от пищеварительной системы к клеткам всего организма.
  4. Защитная функция - клетки поглощают токсины- также они помогают процессу свертываемости крови.
  5. Ферментативная функция - в эритроцитах содержатся разнообразные необходимые для здоровья человека ферменты и витамины.

Следует отметить, что именно по эритроцитам определяется группа крови.

Функции лейкоцитов

Лейкоциты являются белыми кровяными тельцами, которые имеют способность к самостоятельному передвижению. Функции тромбоцитов человека играют значительную роль. Потому очень важно обращать внимание на уровень тромбоцитов в крови, который должен быть в пределах нормы. Главное, что кровяные пластинки несут ответственность за свертываемость крови. Перечислим основные функции лейкоцитов:

  1. Трофическая функция - лейкоциты переваривают и переносят вещества другим клеткам.
  2. Выделительная функция - не переваренные остатки вместе с лейкоцитами поступают в пищеварительный канал и выводятся из организма.
  3. Защитная функция - лейкоциты уничтожают чужеродные клетки и вещества.

При высоком уровне тромбоцитов, есть опасность возникновения тромбов. При низком уровне – может возникнуть внутрисосудистое кровотечение.

Функции тромбоцитов очень важны в процессе свертывания крови. При разрыве сосудов кровные пластинки и тромбопластины образуют кровяной сгусток. Формирование сгустка получается их фибрина (нерастворимого белка).

Свертываемость крови определяется при температуре 37°С, в норме, когда сгусток образовывается за 3-8 минут.

Функции эритроцитов тромбоцитов лейкоцитов важны для здоровья человеческого организма

Эритроциты, лейкоциты и тромбоциты являются основными видами клеток, входящими в состав крови.

Функции клеток крови

Функции эритроцитов лейкоцитов тромбоцитов заключаются в следующем:

  • Транспортная функция, которая включает в себя ряд подфункций: дыхательная- питательная- выделительная- терморегулирующая- регуляторная.
  • Защитная функция;
  • гомеостатическая функция;
  • механическая функция.

Если с функциями эритроцитов тромбоцитов лейкоцитов происходят какие-либо нарушения или проблемы, то в организме могут возникать различные заболевания. Некоторые из них могут быть опасны своими осложнениями.

Например, низкий уровень тромбоцитов может сигнализировать о возникновении инфекционных заболеваний, о проблемах с печенью, щитовидной железы. Высокий же уровень данных клеток может привести к тромбообразованию, закупорке сосудов, но самое опасное это формирование тромбоэмболов.

Особенно важно обращать внимание на резкие отклонения тромбоцитов по причине того, что это может говорить о серьезных заболеваниях.

Таким образом, нормальная работа всех функций эритроцитов, лейкоцитов и тромбоцитов имеет огромное значение для каждого.

13. Тромбоциты: строение, функции, норма. Гемостаз. Факторы свёртывания крови

Тромбоциты, или кровяные пластинки, представляют собой бесцветные сферические, лишённые ядер тельца. Их диаметр 2-3 мкм, в 3 раза меньше диаметра эритроцитов. Тромбоциты образуются в красном костном мозге и селезёнке. Продолжительность жизни около 4 дней. Разрушение их происходит в селезёнке. Число тромбоцитов в крови около 300,0*10 9 /л. Значительная часть их депонирована в селезёнке, печени, лёгких и в случае необходимости поступает в кровь. Приём пищи, мышечная работа повышают содержание тромбоцитов в крови.

Основная функция тромбоцитов связана с их участием в свёртывании крови. При ранении кровеносных сосудов тромбоциты разрушаются. При этом из них выходит в плазму ряд веществ, необходимых для формирования кровяного сгустка - тромба . Как правило, образование тромба сопровождается сужением кровеносных сосудов. Этому способствует выделяющееся при разрушении кровяных пластинок особое сосудосуживающее вещество.

Гемостаз - комплекс реакций организма, направленных на предупреждение и остановку кровотечений.

Свёртывание крови происходит обычно при кровотечении из сосудов в результате взаимодействия специальных белков, ферментов и других веществ.

В механизме свёртывания крови участвуют более 40 компонентов. Основными являются три:

  1. тромбоциты;
  2. фермент протромбин (находится в плазме крови);
  3. белок фибриноген (растворён в плазме крови).

Протромбин и тромбопластин тромбоцитов являются неактивными ферментами, поэтому в обычных условиях кровотока свёртывания крови не происходит.

Процесс свёртывания крови при ранении сосудов очень сложный и сводится в конечной стадии к тому, что фибриноген плазмы крови превращается в нерастворимый белок фибрин, имеющий волокнистое строение. В результате этого и образуется сгусток крови, состоящий из переплетённых нитей фибрина, между которыми находятся форменные элементы крови. При схематичном изложении процесса свёртывания крови в нём можно выделить три фазы.

Первая по времени фаза - образование активного кровяного (или полного) тромбопластина. Он образуется в результате взаимодействия тромбопластина тромбоцитов и других веществ, содержащихся в кровяных пластинках, с некоторыми белками (различные глобулины) и другими компонентами плазмы крови. Это взаимодействие происходит во время кровотечения, при котором кровяные пластинки от соприкосновения с краями раны разрушаются и из них в плазму поступают различные вещества, участвующие в свёртывании крови. В свёртывании крови участвует также тканевой тромбопластин, выделяющийся в плазму крови из тканей при их ранении.

Вторая фаза заключается в том, что под влиянием активного тромбопластина в присутствии ионов кальция неактивный протромбин плазмы крови превращается в активный фермент тромбин.

В третьей фазе под воздействием активного тромбина фибриноген превращается в фибрин - образуется сгусток крови.

Кровь человека, выделившаяся из организма, свёртывается через 3-4 минуты. Высокая температура ускоряет свёртывание крови, на холоде же оно резко замедляется.

Что такое тромбоциты?

Тромбоциты – это важнейшая составляющая часть крови. Роль тромбоцитов в анализе периферической крови не ясна обычному человеку, но этот показатель может о многом сказать врачу. Кровь не является однородной жидкостью, бегающей по сосудам, в ней циркулируют эритроциты, лейкоциты, причем разные виды. Тромбоциты и другие компоненты крови необходимы для организма человека. Каждый из элементов играет важную роль.

Понятие о клетках

Просто и доступно можно сказать, что тромбоциты - это красные кровяные тельца, не имеющие ядра. Такие пластинки выглядят, как двояковыпуклые круглые или продолговатые диски. Под микроскопом можно увидеть, что такое образование выглядит неоднородным по цвету, на периферии светлее, чем в центре.

Размер клеток колеблется в пределах 0,002-0,006 мм, то есть они достаточно мелкие. Строение тромбоцитов сложное и не ограничивается простым образованием плоской пластинки.

Продолжительность жизни тромбоцитов составляет около 10 суток, после чего они погибают в селезенке или костном мозге. Тромбоциты в крови могут жить от 1 до 2 недель, время зависит от ряда факторов. Образование красных клеток происходит непрерывно. Классификация их подразумевает деление на молодые, зрелые, старые популяции. Молодые формы крупнее, чем более взрослые экземпляры.

На протяжении жизни скорость выработки и замены тромбоцитов и других форменных элементов крови неодинакова. С возрастом выработка стволовых клеток замедляется, их становится меньше, и, следовательно, количество производных также. Вот зачем и существуют различные нормы показателей с поправкой на возраст. У детей эта цифра наибольшая, в зрелом возрасте она стабилизируется и держится среднего значения, а далее снижается.

Тромбоциты в анализе крови при нормальном значении имеют различные показатели: взрослые людимиллиардов пластинок на единичный объем крови, у детей это количествомиллиардов.

Тромбоциты образуются красным костным мозгом, срок созревания составляет неделю. Место образования тромбоцитов человека - толща губчатых, то есть неполых, костей. Это ребра, тазовая кость, тела позвонков. Механизм образования клеток следующий: губчатое вещество вырабатывает стволовые клетки. Как известно, они не имеют дифференцировки, то есть склонности к той или иной структуре. Под воздействием ряда факторов происходит формирование этой клетки в тромбоцит.

Образующийся тромбоцит проходит несколько стадий формирования:

  • стволовая клетка становится колониеобразующей мегакариоцитарной единицей;
  • этап мегакариобласта;
  • протромбоцит становится промегакариоцитом;
  • последний этап – тромбоцит.

Процесс образования пластинки выглядит как «отшнуровывание» клеток от большого «родителя» - мегакариоцита.

Образовавшийся клон пластинок в свободном состоянии циркулируют в крови, есть структура, где формируется депо клеток. Это необходимо для того, чтобы в случае необходимости обеспечить определенное количество клеток в нужном месте. Они необходимы до того момента, пока не наладится экстренный синтез новых популяций. Таким местом хранения является селезенка, высвобождение происходит путем сокращения органа.

В процентном соотношении около трети клеток хранится в селезенке, а процесс выхода тромбоцитов из нее контролирует адреналин.

Строение и свойства пластинки

При разрезе пластинки было выявлено, что образование тромбоцитов происходит с формированием микроструктур (микрофиламентов, трубочек и органелл).

Каждый выполняет свою функцию:

  1. Наружный слой представлен трехслойной мембраной, то есть оболочкой. Она имеет рецепторы, которые отвечают за сцепление с другими тромбоцитами и присоединение к тканям организма. Для того чтобы обеспечить основную функцию пластинок, в толще мембраны также имеется фермент фосфолипаза А, участвующий в процессе образования тромба. В мембране или плазмолемме имеются ямочки, которые соединяются с системой каналов в толще оболочки.
  2. Под мембраной располагается липидный слой, представленный гликопротеидами. Существует несколько видов, они связывают тромбоциты между собой. Первый тип отвечает за формирование связей между поверхностными слоями двух тромбоцитов. Далее в реакцию вступают гликопротеиды, обеспечивающие дальнейшее «склеивание» клеток между собой. Тип пятый позволяет тромбоцитам находиться в склеенном состоянии длительное время.
  3. Следующий слой – это микротрубочки, обеспечивающие сокращение структуры и перемещение содержимого гранул наружу.
  4. Еще глубже внутрь располагается зона органелл, ими являются митохондрии, плотные тела, гранулы гликогеновой природы и т. д. Эти компоненты становятся источниками энергии (АТФ, АДФ, серотонин, кальций и норадреналин). Благодаря перечисленным составляющим возникает возможность заживления ран.

Микротрубочки и микрофиламенты являются цитоскелетом клеток, то есть позволяют ей иметь устойчивую форму.

Адгезия представляет собой возможность прилипания телец к стенке поврежденного сосуда.

Это возможно, благодаря наличию соответствующих рецепторов к поврежденному эндотелию. Связь может образоваться посредством склеивания клетки с коллагеном сосуда.

Другое свойство тромбоцита – активация, которая подразумевает увеличение площади и объема клетки для обеспечения большей площади взаимодействия. Дополнительными функциями тромбоцита становится производство и выделение ростовых факторов и сосудосуживающих компонентов, а также коагуляционных.

Агрегация – это способность пластинок приклеиваться друг к другу посредством фибриногена через рецепторы. Обратимая фаза процесса составляет около 2 минут. Дальнейший ход реакции контролируется простагландинами и концентрацией оксида азота, чтобы избежать избыточной агрегации вне очага повреждения.

Функции

Наибольшее значение для организма человека тромбоциты имеют при возникновении кровотечения. Для чего нужны тромбоциты?

Функции тромбоцитов можно представить следующим списком:

  • Пластинки содержат биологически активные вещества, высвобождаемые после разрушения и гибели клеток. Таким веществом значение тромбоцитов заключается в освобождении факторов роста.
  • Основная функция тромбоцитов – кровоостанавливающая. Чтобы ее реализовать клетки группируются большими и маленькими составами. Тромбоциты имеют 12 факторов, влияющих на процесс свертывания крови. Чаще всего такая необходимость возникает при повреждении, следствием которого становится кровотечение.
  • Регенеративная (при незначительном повреждении активные вещества в гранулах клеток способствуют заживлению сосудистой стенки).
  • Метаболизм серотонина.
  • Защитная (пластинки могут захватывать чужеродные агенты и уничтожать их путем собственной гибели).

За остановку кровотечения в организме отвечают тромбоциты посредством нескольких механизмов:

  • первичная реакция организма – это миграция тромбоцитов из депо и периферической крови к месту повреждения, последующая их агрегация: это вызывает образование тромбоцитарной пробки;
  • кровяные пластинки содержат вещества (адреналин, норадреналин), которые выбрасываются в месте кровотечения для обеспечения сосудосуживающего эффекта. Это обеспечивает ограничение кровообращения зоны поражения;
  • вторичный гемостаз – это запуск процесса образования фибринового сгустка ускоренными темпами.

В месте ранения сосуда скапливаются кровяные пластинки, из их гранул выходят активные вещества. Остановка кровотечения происходит не только при участии клеток крови, но и компонентов стенки сосуда.

Они способствуют образованию тромба:

  • тромбоциты становятся активным тромбопластином;
  • в присутствии этого вещества происходит превращение из протромбина в неактивном состоянии в тромбин;
  • при наличии тромбина фибриноген запускает образование нитей фибрина.

Эти реакции проходят при обязательном условии присутствия ионов кальция.

Третий этап кровоостанавливающего процесса характеризуется уплотнением сгустка из-за сокращения актина и фибрина. Поскольку на протяжении тромбообразования число клеток снижается, то накопление тромбопоэтина напоминает организму о том, что необходимо синтезировать новые пластинки.

Снижение популяции клеток называется тромбоцитопенией, а повышение – тромбоцитозом. Установление причины такого изменения происходит доктором индивидуально.

2.Кровяные пластинки (тромбоциты), их количество, размеры, строение, функции, продолжительность жизни.

Тромбоциты (кровяные пластинки от греч. thrombos – сгусток и cytos – клетка) мелкие дисковидные двояковыпуклые безъядерные постклеточные структуры диаметром 2–4 мкм, циркулирующие в крови.

Они представляют собой окруженные мембраной и лишенные ядра фрагменты цитоплазмы мегакариоцитов. Они образуются в красном костном мозге в результате фрагментации участков цитоплазмы мегакариоцитов (гигантских клеток костного мозга), поступают в кровь, где находятся в количестве 2–4 109 /л крови, из этого числа 15% обновляется ежедневно.

Средняя продолжительность жизни составляет 9–10 дней.

1. Остановка кровотечения при повреждении стенки сосуда (первичный гемостаз) – основная функция тромбоцитов.

2. Обеспечение свертывания крови (гемокоагуляция) – вторичный гемостаз

3. Участие в реакции заживления ран (главным образом повреждения сосудистой стенки) и воспаления.

4. Обеспечение нормальной функции сосудов, в частности их эндотелиальной выстилки – ангиотрофическая.

Различают 5 основных форм тромбоцитов:

1. Юные – 10% 2. Зрелые – 80–85% 3. Старые – 5–10% 4. Дегенеративные – до 2% 5. Гигантские формы

Молодые формы тромбоцитов крупнее старых.

Тромбоцит окружен плазмолеммой и включает светлую про-зрачную наружную часть, называемую гиаломером, и централь-ную окрашенную часть, содержащую азурофильные гранулы –грануломер.

Плазмолемма покрыта снаружи толстым (50–200 нм) слоем гли-кокаликса. Она содержит многочисленные рецепторы, опо-средующие действие веществ. Активирующих или ингибирующих функции тромбоцитов, их адгезию и агрегацию.

Сама плазмолемма образует инвагинации с отходящими каналь-цами, также покрытыми гликокаликсом.

Гиаломер содержит две системы трубочек (канальцев) и большую часть элементов цитоскелета.

Цитоскелет тромбоцитов представлен микротрубочка-

ми, микрофиламентами и промежуточными филамен-

– Микротрубочки в количестве 4–15 располагаются по периферии цитоплазмы и формируют мощный пучок (краевое кольцо) служащий каркасом и способствующий поддержанию формы тромбоцитов.

– Микрофиламенты образованы актином.

3.Третья неделя эмбриогенеза человека. Основные процессы.

В этот период продолжается вторая фаза гаструляции, образуются зародышевые листки, хорда, прехордальная пластинка, нервная трубка, нервный гребень. Начинается сегментация дорсальной мезодермы (сомиты, сегментные ножки), образуются париетальный и висцеральный листки спланхнотома и эмбриональный целом, который в дальнейшем разделяется на три полости тела:

Закладываются сердце, кровеносные сосуды, предпочка (пронефрос). Происходит формирование внезародышевых органов – аллантоиса, вторичных и третичных ворсин хориона. Образуется туловищная складка. Первичная кишка зародыша отделяется от вторичного желточного мешка.

Обособление тела зародыша

С 20–х – 21–х суток начинает обособляться тело зародыша – этот процесс носит названиелатеральное сгибание. Зародышевый щиток как бы приподнимается над желточным мешком и сворачивается, отделяясь от него туловищной складкой. При этом зародышевая энтодерма замыкается в кишечную трубку, которая, однако, в среднем отделе ещё имеет сообщение с желточным мешком.

Обособление тела зародыша идёт одновременно с постгаструляционными процессами – образованием осевых зачатков органов.

Формирование комплекса осевых зачатков

В течение конца 3–й и всей 4–й недель (18–28 сутки) из трёх зародышевых листков формируетсякомплекс осевых зачатков. В свою очередь, затем из большинства этих зачатков развиваются ткани, органы и системы.

Дифференцировка мезодермы и образование мезенхимы. Сразу после своего образования мезодерма подразделяется на два главных отдела: сомиты – спинной отдел и спланхнотом – брюшной отдел.

Между сомитами и спланхнотомом имеется еще один отдел – сегментная ножка, с помощью которой они соединяются.

Сомиты разделяются на три части: дерматом, склеротом, миотом.

· Дерматом дает начало мезенхиме дерматома, из нее образуется дерма – собственно кожа.

· Миотом является источником поперечнополосатых мышц.

· Из склеротома образуется мезенхима склеротома, которая дает начало костям и хрящам.

Спланхнотом делится на висцеральный и париетальный листки, между которыми находится вторичная полость тела – целом. Висцеральный и париетальный листки дают начало висцеральным и париетальным серозным оболочкам.

Из сегментных ножек, находящихся в грудном отделе зародыша (первые 8–10 сегментов), закладывается предпочка и мезонефральный (вольфов) проток, из которого образуются каналец придатка семенника и семявыносящий проток. Из сегментных ножек, находящихся в туловищных отделах зародыша, развивается первичная почка, которая сначала функционирует у зародыша, а потом из канальцев первичной почки образуются прямые канальцы, канальцы сети семенника, выносящие канальцы придатка семенника.

Образование хорды происходит из клеток первичного узелка. Клетки первичного узелка, образующегося в эктодерме, прорастают в пространство между экто– и энтодермой, там разрастаются вперед и назад и образуют хорду.

Хорда образуется практически одновременно с самой мезодермой – в конце 3–й недели развития.

Образование нервной трубки. Уже после образования мезодермы и хорды, под индуктивнымвлиянием нотохорда (растущего вперёд) в срединной части эктодермы образуется утолщение, тоже растущее вперёд от первичного узелка, – нервная пластинка.

На 18–й день начинается прогибание этой пластинки – появляются нервный желобок и нервные валики. Затем (на протяжении 4–й недели) желобок постепенно замыкается: вначале – в шейном отделе, потом – в каудальном и, наконец, в головном – образуется непарная нервная трубка.

Строение тромбоцитов

Кровьциркулирует по кровеносным сосудам, поставляя всем органам кислород (из легких), питательные вещества (из кишечника), гормоны и др. и перенося от них к легким углекислый газ, а к органам выделения метаболиты, подлежащие обезвреживанию и выведению.

Таким образом, важнейшими функциями крови являются:

Дыхательная (перенос кислорода из легких во все органы и углекислоты из органов в легкие);

Трофическая (доставка органам питательных веществ);

Защитная(обеспечение гуморального и клеточного иммунитета, свертывание крови при травмах);

Выделительная (удаление и транспортировка в почки продуктов обмена веществ);

Гомеостатическая (поддержание постоянства внутренней среды организма, в том числе иммунного гомеостаза);

Регуляторная(перенос гормонов, факторов роста и других биологически активных веществ, осуществляющих регуляцию разнообразных функций).

Кровь состоит из форменных элементов и плазмы.

Плазма крови представляет собой межклеточное вещество жидкой консистенции. Она состоит из воды (90-93%) и сухого вещества (7-10%), в котором 6,6-8,5% белков и 1,5-3,5% других органических и минеральных соединений. К основным белкам плазмы крови относятся альбумины, глобулины, фибриноген и компоненты комплемента.

К форменным элементам крови относятся

Кровяные пластинки (тромбоциты).

Из них только лейкоциты являются истинными клетками; эритроциты и тромбоциты человека относятся к постклеточным структурам.

Эритроциты, или красные кровяные тельца, наиболее многочисленные форменные элементы крови (4,5 млн/mL у женщин and 5 млн/mL у мужчин – в среднем). Число эритроцитов у здоровых людей может варьировать в зависимости от возраста, эмоциональной и мышечной нагрузки, действия экологических факторов и др.

У человека и млекопитающих представляют собой безъядерные клетки, неспособные к делению.

Эритроциты образуются в красном костном мозге. Продолжительность жизни эритроцитов составляет около 120 дней, а затем старые эритроциты разрушаются макрофагами селезенки и печени (2.5 млн эритроцитов ежесекундно).

Эритроциты выполняют свои функции в кровеносных сосудах, которые в норме не покидают.

Дыхательная, обеспечивается наличием в эритроцитах гемоглобина (железосодержащий белковый пигмент), который определяет их цвет;

Регуляторная и защитная – обеспечиваются благодаря способности эритроцитов переносить на своей поверхности биологически активные вещества, в том числе иммуноглобулины.

В норме в крови человека 80-90% составляют эритроциты двояковогнутой формы – дискоциты .

У здорового человека незначительная часть эритроцитов может иметь форму, отличающуюся от обычной: встречаются планоциты (с плоской поверхностью) и стареющие формы: сфероциты (шаровидные); эхиноциты (шиповидные); стоматоциты (куполообразные). Такое изменение формы обычно связано с аномалиями мембраны или гемоглобина у стареющих эритроцитов. При различных заболеваниях крови (анемиях, наследственных заболеваниях и др.) отмечается пойкилоцитоз – нарушения формы эритроцитов (примеры патологических формы эритроцитов: акантоциты, овалоциты, кодоциты, дрепаноциты (серповидные), шистоциты и др.)

70% эритроцитов у здоровых людей – нормоциты с диаметром от 7,1 до 7,9 мкм. Эритроциты с диаметром менее 6,9 мкм называют микроцитами, эритроциты с диаметром более 8 мкм называются макроцитами, эритроциты с диаметром 12 мкм и более – мегалоцитами.

В норме количество микро- и макроцитов составляют по 15%. В том случае, когда количество микроцитов и макроцитов превышает пределы физиологической вариации, говорят об анизоцитозе . Анизоцитоз является ранним признаком анемии, а его степень говорит о тяжести анемии.

Обязательной составной частью популяции эритроцитов являются их молодые формы (1-5% от общего числа эритроцитов) – ретикулоциты . Ретикулоциты поступают в кровоток из костного мозга. Ретикулоциты содержат остатки рибосом и РНК, – выявляются в виде сеточки при суправитальном окрашивании, - митохондрии и к.Гольджи. Окончательная дифференцировка в течениечасов после выхода в кровоток.

Поддержание формы эритроцита обеспечивают белки примембранного цитоскелета.

В состав цитоскелета эритроцитов входят: примембранный белок спектрин , внутриклеточный белок анкирин , мембранные белки гликоферин и белки полос 3 и 4 . Спектрин участвует в поддержании двояковогнутой формы. Анкирин связывает спектрин с трансмембранным белком полосы 3.

Гликоферин пронизывает плазмолемму и выполняет рецепторные функции. Олигосахариды гликолипидов и гликопротеидов образуют гликокаликс. Они определяют антигенный состав эритроцитов. По содержанию агглютиногенов и агглютининов различают 4 группы крови. На поверхности эритроцитов имеется также резус-фактор – агглютиноген.

Цитоплазма эритроцитов состоит из воды (60%) и сухого остатка (40%), содержащего около 95% гемоглобина. Гемоглобин является дыхательным пигментом, имеющим в своем составе железосодержащую группу (гем ).

Лейкоциты или белые кровяные клетки, представляют собой группу морфологически и функционально разнообразных подвижных форменных элементов циркулирующих в крови, могут переходить через стенку сосудов в соединительную ткань органов, где они выполняют защитные функции.

Концентрация лейкоцитов у взрослого человека составляет 4-9х10 9 /л. Величина этого показателя может варьировать в связи со временем суток, приемом пищи, характером выполняемой работы и другими факторами. Поэтому исследование показателей крови является необходимым для установления диагноза и назначения лечения. Лейкоцитоз - увеличение концентрации лейкоцитов в крови (чаще всего при инфекционных и воспалительных заболеваниях). Лейкопения – снижение концентрации лейкоцитов в крови (в результате тяжелых инфекционных процессов, токсических состояний, облучения).

По морфологическим признакам, из которых ведущим служит присутствие в их цитоплазме специфических гранул , и биологической роли лейкоциты подразделяют на две группы:

Для группы гранулоцитов характерно наличие сегментированных ядер и специфической зернистости в цитоплазме. Они образуются в красном костном мозге. Продолжительности жизни гранулоцитов в крови – от 3 до 9 дней.

Нейтрофильные гранулоциты- составляют 48 – 78% от общего числа лейкоцитов, их размер в мазке крови составляетмкм.

В зрелом сегментоядерном нейтрофиле ядро содержит 3–5 сегментов, соединенных тонкими перемычками.

Для женщин характерно наличие в ряде нейтрофилов полового хроматина в виде барабанной палочки – тельце Барра.

Функции нейтрофильных гранулоцитов:

Разрушение и переваривание поврежденных клеток;

Участие в регуляции деятельности других клеток.

Нейтрофилы поступают в очаг воспаления, где фагоцитируют бактерии и тканевые обломки.

Ядро нейтрофильных гранулоцитов имеет неодинаковое строение в клетках разной степени зрелости. На основании строения ядра различают:

Юные нейтрофилы (0,5%) имеют бобовидное ядро. Палочкоядерные нейтрофилы (1 - 6%) имеют сегментированное ядро в форме буквы S, изогнутой палочки или подковы. Увеличение в крови юных или палочкоядерных нейтрофилов свидетельствует о наличии воспалительного процесса или кровопотери, и такое состояние называют сдвигом влево . Сегментоядерные нейтрофилы (65%) имеют дольчатое ядро, представленное 3-5 сегментами.

Цитоплазма нейтрофилов слабооксифильна, в ней можно различить два типа гранул:

Неспецифические гранулы являются первичными лизосомами и содержат лизосомальные ферменты и миелопероксидазу. Миелопероксидаза из перекиси водорода продуцирует молекулярный кислород, обладающий бактерицидным действием.

Специфические гранулы содержат бактериостатические и бактерицидные вещества – лизоцим, щелочную фосфатазу и лактоферрин. Лактоферрин связывает ионы железа, что способствует склеиванию бактерий.

Так как основная функция нейтрофилов - фагоцитоз, их еще называют микрофагами . Фагосомы с захваченной бактерией сначала сливаются со специфическими гранулами, ферменты которых убивают бактерию. Позднее к этому комплексу присоединяются лизосомы, гидролитические ферменты которых переваривают микроорганизмы.

Нейтрофильные гранулоциты циркулируют в периферической крови 8-12 часов. Срок жизни нейтрофилов 8-14 суток.

Эозинофильные гранулоцитысоставляют 0,5-5% всех лейкоцитов. Их диаметр в мазке кровимкм.

Функции эозинофильных гранулоцитов:

Участие в аллергических и анафилактических реакциях

Ядро эозинофила имеет обычно двасегмента , в цитоплазме содержатся два типа гранул – специфические оксифильные и неспецифические азурофильные (лизосомы).

Для специфических гранул характерно наличие в центре гранулы кристаллоида , который содержит главныйщелочной белок (МВР) , богатый аргинином (обуславливает эозинофилию гранул) и обладает мощным антигельминтным, антипротозойным и антибактериальным эффектом.

Эозинофилы с помощью фермента гистаминазы нейтрализуют гистамин, выбрасываемый базофилами и тучными клетками, а также фагоцитируют комплекс Антиген-Антитело.

Базофильные гранулоцитысамая малочисленная группа(0-1%) лейкоцитов и гранулоцитов.

Функции базофильных гранулоцитов:

Регуляторная, гомеостатическая – гистамин и гепарин, содержащиеся в специфических гранулах базофилов, участвуют в регуляции процесса свертывания крови и проницаемости сосудов;

Участие в иммунологических реакциях аллергического характера.

Ядра базофильных гранулоцитов слабо дольчатые, цитоплазма заполнена крупными гранулами, нередко маскирующими ядро и обладающими метахромазией , т.е. способностью изменять цвет примененного красителя.

Метахромазия обусловлена наличием гепарина . В гранулах содержатся также гистамин , серотонин, ферменты пероксидаза и кислая фосфатаза.

Быстрая дегрануляция базофилов происходит при реакциях гиперчувствительности немедленного типа (при астме, анафилаксии, аллергическом рините), действие выделяющиеся при этом веществ приводит к сокращению гладких мышц, расширению сосудов и повышению их проницаемости. На плазмолемме есть рецепторы к IgE.

К агранулоцитам относятся

В отличие от гранулоцитов агранулоциты:

Их ядра не сегментированы.

Лимфоциты составляют в крови 20-35% от всех лейкоцитов. Их размеры варьируют от 4 до 10 мкм. Различают малые (4,5-6 мкм), средние (7-10 мкм) и большие лимфоциты (10 мкм и более). Большие лимфоциты (молодые формы) у взрослых в периферической крови практически отсутствуют, встречаются лишь у новорожденных и детей.

Обеспечение реакций иммунитета;

Регуляция деятельности клеток других типов в иммунных реакциях.

Для лимфоцитов характерно округлое или бобовидное, интенсивно окрашенное ядро, так как содержит много гетерохроматина и узкий ободок цитоплазмы.

В цитоплазме содержится небольшое количество азурофильных гранул (лизосом).

По происхождению и функции различают Т-лимфоциты (образуются из стволовых клеток костного мозга и созревают в тимусе), В-лимфоциты (образуются в красном костном мозге).

В-лимфоцитысоставляют около 30% циркулирующих лимфоцитов. Их главная функция – участие в выработке антител, т.е. обеспечение гуморальногоиммунитета . При активации они дифференцируются в плазмоциты , которые вырабатывают защитные белки – иммуноглобулины (Ig), которые поступают в кровь и уничтожают чужеродные вещества.

Т-лимфоциты составляют около 70% циркулирующих лимфоцитов. Основными функциями этих лимфоцитов являются обеспечение реакций клеточного иммунитета и регуляция гуморального иммунитета (стимуляция или подавление дифференцировки В-лимфоцитов).

Среди Т-лимфоцитов выявлено несколько групп:

Продолжительность жизни лимфоцитов варьирует от нескольких недель до нескольких лет. Т-лимфоциты являются популяцией долгоживущих клеток.

Моноциты составляют от 2 до 9% от всех лейкоцитов. Являются самыми крупными клетками крови, их размермкм в мазке крови. Ядра моноцитов - крупные, разнообразной формы: подковообразные, бобовидные, более светлые, чем у лимфоцитов, гетерохроматин рассеян мелкими зернами по всему ядру. Цитоплазма моноцитов имеет больший, чем у лимфоцитов объем. Слабобазофильная цитоплазма содержит азурофильную зернистость (многочисленные лизосомы), полирибосомы, пиноцитозные пузырьки, фагосомы.

Моноциты крови являются фактически незрелыми клетками, находящимися на пути из костного мозга в ткани. Они циркулируют в крови около 2-4 суток, затем мигрируют в соединительную ткань, где из них образуются макрофаги.

Главная функция моноцитов и образующихся из них макрофагов – фагоцитоз. Различные вещества, образующиеся в очагах воспаления и разрушения ткани, привлекают сюда моноциты и активируют моноциты /макрофаги. В результате активации увеличивается размер клетки, образуются выросты типа псевдоподий, усиливается метаболизм, и клетки выделяют биологически активные вещества цитокины- монокины, такие как интерлейкины (ИЛ-1, ИЛ-6), фактор некроза опухолей, интерферон, простагландины, эндогенные пирогенны и др.

Кровяные пластинкиилитромбоцитыпредставляют собой циркулирующие в крови безъядерные фрагменты цитоплазмы гигантских клеток красного костного мозга – мегакариоцитов.

Тромбоциты имеют округлую или овальную формы, размеры тромбоцитов 2-5 мкм. Продолжительность жизни тромбоцита – 8 дней. Старые и дефектные тромбоциты разрушаются в селезёнке (где депонируется одна треть всех тромбоцитов), печени и костном мозге. Тромбоцитопения – снижение числа тромбоцитов, наблюдается при нарушениях деятельности красного костного мозга, при СПИДе. Тромбоцитоз – увеличение числа тромбоцитов в крови, наблюдается при усиленной выработке в костном мозге, при удалении селезенки, при болевом стрессе, в условиях высокогорья.

Остановка кровотечения при повреждении стенки сосудов (первичный гемостаз);

Обеспечение свертывания крови (гемокоагуляция) - вторичный гемостаз;

Участие в реакциях заживления ран;

Обеспечение нормальной функции сосудов (ангиотрофическая функция).

В световом микроскопе каждая пластинка имеет более светлую периферическую часть, называемую гиаломером и центральную более темную, зернистую часть, называемую грануломером . На поверхности тромбоцитов имеется толстый слой гликокаликса с большим содержанием рецепторов к различным активаторам и факторам свёртывания крови. Гликокаликс образует мостики между мембранами соседних тромбоцитов при их агрегации.

Плазмолемма образует инвагинации с отходящими канальцами, которые участвуют в экзоцитозе гранул и эндоцитозе.

В тромбоцитах хорошо развит цитоскелет, представленный актиновыми микрофиламентами, пучками микротрубочек и промежуточными виментиновыми филаментами. Большую часть элементов цитоскелета и две системы трубочек содержит гиаломер.

Грануломер содержит органеллы, включения и специальные гранулы нескольких типов:

ά-гранулы – самые крупные (нм), содержат белки гликопротеины, принимающие участие в процессах свертывания крови, факторы роста.

δ-гранулы, немногочисленные, накапливают серотонин, гистамин, ионы кальция, АДФ и АТФ.

λ-гранулы: мелкие гранулы. содержащие лизосомные гидролитические ферменты и фермент пероксидазу.

Содержимое гранул при активации выделяется по открытой системе каналов, связанных с плазмолеммой.

В кровотоке тромбоциты представляют собой свободные элементы, не слипающиеся ни друг с другом, ни с поверхностью эндотелия сосудов. При этом эндотелиоциты в норме вырабатывают и выделяют вещества, угнетающие адгезию и препятствующие активации тромбоцитов.

При повреждении стенки сосуда микроциркуляторного русла, которые наиболее часто травмируются, кровяные пластинки служат основными элементами в остановке кровотечения.

Тромбоциты

Тромбоцит

Тромбоциты (от греческого θρόμβος, "сгусток" и κύτος, "клетка") – это небольшие (2-4 мкм диаметром) дискообразные безъядерные клеточные фрагменты, циркулирующие в кровотоке, чутко реагирующие на повреждения сосуда и играющие критически важную роль в гемостазе и тромбозе . Тромбоциты образуются при фрагментации своих предшественников мегакариоцитов в костном мозге . Из одного мегакариоцита образуется от 5 до 10 тысяч тромбоцитов. Средняя продолжительность жизни тромбоцита составляет 5-9 дней. Старые тромбоциты разрушаются в процессе фагоцитоза в селезёнке и клетками Купфера в печени .

Формы тромбоцитов

Различают 5 форм тромбоцитов: юные (0 - 0,8 %), зрелые (90,3 - 95,1 %), старые (2,2 - 5,6 %), формы раздражения (0,8 - 2,3%) и дегенеративные формы (0 - 0,2%).

Функции

Cканирующая электронная микрофотография (SEM) клеток крови человека: эритроцит, активированный тромбоцит, лейкоцит (слева направо).

Тромбоциты выполняют две основных функции:

  1. формирование тромбоцитарного агрегата, первичной пробки, закрывающей место повреждения сосуда;
  2. предоставление своей поверхности для ускорения ключевых реакций плазменного свертывания.

Относительно недавно установлено также, что тромбоциты играют важнейшую роль в заживлении и регенерации поврежденных тканей , освобождая из себя в поврежденные ткани факторы роста , которые стимулируют деление и рост поврежденных клеток . Факторы роста представляют собой полипептидные молекулы различного строения и назначения. К важнейшим факторам роста относятся тромбоцитарный фактор роста (PDGF), трансформирующий фактор роста (TGF-β), фактор роста эндотелия сосудов (VEGF), фактор роста эпителия (EGF), фактор роста фибробластов (FGF), инсулиноподобный фактор роста (IGF).

Физиологическая плазменная концентрация тромбоцитов 150 000-300 000 в мкл.
Уменьшение количества тромбоцитов в крови может приводить к кровотечениям. Увеличение же их количества ведет к формированию сгустков крови (тромбоз), которые могут перекрывать кровеносные сосуды и приводить к таким патологическим состояниям, как инсульт, инфаркт миокарда, легочная эмболия или закупоривание кровеносных сосудов в других органах тела.

Неполноценность или болезнь тромбоцитов называется тромбоцитопатия, которая может быть либо уменьшением количества тромбоцитов (тромбоцитопения), либо нарушением функциональной активности тромбоцитов (тромбастения), либо увеличением количества тромбоцитов (тромбоцитоз). Существуют болезни, уменьшающие число тромбоцитов, такие как гепарин-индуцированная тромбоцитопения или тромботическая пурпура, которые обычно вызывают тромбозы вместо кровотечений.

В связи с неточностью описаний, отсутствием фотографической техники и запутанностью терминологии ранних периодов развития микроскопии, время первого наблюдения тромбоцитов точно неизвестно. Чаще всего их открытие приписывается Донне (Париж, 1842), однако есть данные, что их наблюдал еще сам создатель микроскопа, ван Левенгук (Нидерланды, 1677). Термин "кровяные пластинки", который до сих пор является предпочтительным в англоязычной литературе ("blood platelets"), был введен Биццоцеро (Турин, 1881), который также сыграл ведущую роль в выявлении связи тромбоцитов с гемостазом и тромбозом. Это впоследствии привело к появлению термина "тромбоцит" (Декхюйзен, 1901), который в русском языке стал основным, а в англоязычной литературе используется исключительно для ядерных клеток-тромбоцитов у не-млекопитающих ("thrombocytes"). Кроме того, в русской литературе для тромбоцитов может употребляться термин "бляшка Биццоцеро".

Участие в свертывании

Фибриновый сгусток в цельной крови. Сканирующая электронная микроскопия.

Особенностью тромбоцита является его способность к активации - быстрому и как правило необратимому переходу в новое состояние. Стимулом активации может служить практически любое возмущение окружающей среды, вплоть до простого механического напряжения. Однако основными физиологическими активаторами тромбоцитов считаются коллаген (главный белок внеклеточного матрикса), тромбин (основной белок плазменной системы свертывания), АДФ (аденозиндифосфат, появляющийся из разрушенных клеток сосуда или секретируемый самими тромбоцитами) и тромбоксан А2 (вторичный активатор, синтезируемый и выбрасываемый тромбоцитами; его дополнительная функция заключается в стимуляции вазоконстрикции).
Активированные тромбоциты становятся способны прикрепляться к месту повреждения (адгезия) и друг к другу (агрегация), формируя пробку, перекрывающую повреждение. Кроме того, они участвуют в плазменном свертывании двумя основными способами - экспонирование прокоагулянтной мембраны и секреция α-гранул.

Экспонирование прокоагулянтной мембраны

В нормальном состоянии мембрана тромбоцитов не поддерживает реакций свертывания. Отрицательно заряженные фосфолипиды, в первую очередь фосфатидилсерин, сосредоточены на внутреннем слое мембраны, а фосфатидилхолин внешнего слоя связывает факторы свертывания гораздо хуже. Несмотря на то, что некоторые факторы свертывания могут связываться и с неактивированными тромбоцитами, это не приводит к формированию активных ферментативных комплексов. Активация тромбоцита предположительно приводит к активации фермента скрамблазы, который начинает быстро, специфично, двусторонне и АТФ-независимо перебрасывать отрицательно заряженные фосфолипиды из одного слоя в другой. В результате происходит установление термодинамического равновесия, при котором концентрация фосфатидилсерина в обоих слоях выравнивается. Кроме того, при активации имеет место выставление и/или конформационное изменение многих трансмембранных белков внешнего слоя мембраны, и они приобретают способность специфически связывать факторы свертывания, ускоряя реакции с их участием. Активация тромбоцитов имеет несколько степеней, и экспрессия прокоагулянтной поверхности является одной из высших. Только тромбин или коллаген могут вызывать такой сильный ответ. Более слабые активаторы, особенно АДФ, могут вносить вклад в работу сильных активаторов. Однако, они не способны самостоятельно вызвать появление фосфатидилсерина; их эффекты сводятся к изменению формы тромбоцитов, агрегации и частичной секреции.

Секреция α-гранул

Тромбоциты содержат несколько типов гранул, содержимое которых секретируется в процессе активации. Главными для свертывания являются α-гранулы, содержащие высокомолекулярные белки, такие как фактор V и фибриноген.

Заболевания

  1. Ведущие к понижению количества тромбоцитов в крови
    • Болезнь Верльгофа (идиопатическая тромбоцитопеническая пурпура)
    • Тромботическая тромбоцитопеническая пурпура
    • Тромбоцитопеническая пурпура, вызванная лекарствами (например, гепарин-индуцированная)
  2. Ведущие к повышению количества тромбоцитов в крови или к нарушению их функциональности
    • HELLP-синдром (Hemolysis, Elevated Liver enzyme values and Low Platelet counts)
    • Гемолитический уремический синдром
    • Тромбоцитоз
  3. Нарушения способности тромбоцитов к адгезии и агрегации
    • Синдром Бернара-Сулье
    • Тромбастения Гланцмана
    • Синдром Скотта
    • Синдром Германского-Пудлака
    • Синдром серых тромбоцитов
  4. Нарушения метаболизма тромбоцитов
    • Пониженная циклооксигеназная активность, врожденная или приобретенная
    • Дефицит пула тромбоцитов, врожденная или приобретенная
  5. Заболевания, в которых тромбоциты играют ключевую роль
    • Цереброваскулярная болезнь
    • Периферическая артериальная окклюзионная болезнь
    • Синдром Самтера

Тесты для оценки сосудисто-тромбоцитарного компонента гемостаза

  • Время кровотечения
  • Количество тромбоцитов в крови
  • Индуцированная агрегация тромбоцитов

Качественные дефекты тромбоцитов, лежащие в основе большого числа геморрагических диатезов, подразделяют на следующие группы:

  • дезагрегационные тромбоцитопатии, обусловленные отсутствием или блокадой мембранных рецепторов тромбоцитов (тромбастения Гланцмана и др.);
  • болезни отсутствия плотных и α-гранул;
  • нарушения высвобождения гранул;
  • нарушения образования циклических простагландинов и тромбоксана А2;
  • дефицит, аномалии и нарушения мультимерности фактора Виллебранда;
  • нарушения обмена нуклеотидов и транспорта кальция.

Примечания

См. также

Литература

Тромбоциты (Platelet count) - форменные элементы крови, участвующие в обеспечении гемостаза. Тромбоциты - мелкие безъядерные клетки, овальной или округлой формы; их диаметр 2-4 мкм. Образуются тромбоциты в костном мозге из мегакариоцитов. В спокойном состоянии (в кровотоке) тромбоциты имеют дисковидную форму. При активации тромбоциты приобретают сферическую форму и образуют специальные выросты (псевдоподии). С помощью подобных выростов кровяные пластинки могут соединяться друг с другом (агрегировать) и прилипать к поврежденной сосудистой стенке (способность к адгезии).

Тромбоциты обладают свойством выбрасывать при стимуляции содержимое своих гранул, в которых содержатся факторы свертывания, фермент пероксидаза, серотонин, ионы кальция - Са2*, аденозиндифосфат (АДФ), фактор Виллебранда, тромбоцитарный фибриноген, фактор роста тромбоцитов. Некоторые факторы свертывания, антикоагулянты и другие вещества тромбоциты могут переносить на своей поверхности. Свойства тромбоцитов, взаимодействующих с компонентами стенок сосудов, позволяют образовывать временный сгусток и обеспечивать остановку кровотечения в мелких сосудах (тромбоцитарно-сосудистый гемостаз).

Главная функция тромбоцитов - участие в процессе свёртывания крови (гемостазе) - важной защитной реакции организма, предотвращающей большую кровопотерю при ранении сосудов. Оно характеризуется следующими процессами:адгезия, агрегация, секреция, ретракция, спазм мелких сосудов и вязкий метаморфоз, образование белого тромбоцитарного тромба в сосудах микроциркуляции с диаметром до 100 нм. Другая функция тромбоцитов ангиотрофическая - питание эндотелия кровеносных сосудов. Относительно недавно установлено также, что тромбоциты играют важнейшую роль в заживлении и регенерации поврежденных тканей, освобождая из себя в раневые ткани факторы роста, которые стимулируют деление и рост поврежденных клеток. Факторы роста представляют собой полипептидные молекулы различного строения и назначения.

К важнейшим факторам роста относятся тромбоцитарный фактор роста (PDGF), трансформирующий фактор роста (TGF-β), фактор роста эндотелия сосудов (VEGF), фактор роста эпителия (EGF), фактор роста фибробластов (FGF), инсулиноподобный фактор роста (IGF). Уровень тромбоцитов подвержен естественным колебаниям во время менструального цикла, поднимаясь после овуляции и снижаясь после начала менструации. Он зависит также от питания больного, понижаясь при тяжелом дефиците железа, дефиците фолиевой кислоты и дефиците витамина В12.

Тромбоциты входят в число показателей острой фазы воспаления; при сепсисе, опухолях, кровотечениях, легком дефиците железа может возникать вторичный тромбоцитоз. Предполагается, что выработка тромбоцитов при этом неопасном состоянии стимулируется ИЛ-3, ИЛ-6 и ИЛ-11. Напротив, тромбоцитоз при хронических миелопролиферативных заболеваниях (эритремия, хронический миелолейкоз, сублейкемический миелоз, тромбоцитемия) может приводить к тяжелым кровотечениям или тромбозам. Бесконтрольная выработка тромбоцитов у этих больных связана с клональной патологией стволовой кроветворной клетки, затрагивающей все клетки-предшественники.

Временное повышение количества тромбоцитов можно наблюдать после интенсивной физической нагрузки. Небольшое физиологическое снижение уровня тромбоцитов отмечается у женщин во время менструации. Умеренное снижение количества тромбоцитов может иногда наблюдаться у практически здоровых беременных женщин. Клинические признаки снижения количества тромбоцитов - тромбоцитопении (повышенная склонность к внутрикожным кровоизлияниям, кровоточивость десен, меноррагии и т.п.) - обычно имеют место только в том случае, когда количество тромбоцитов снижается ниже 50х103 клеток/мкл.

Патологическое снижение количества тромбоцитов происходит вследствие их недостаточного образования при ряде заболеваний системы крови, а также при повышенном потреблении или разрушении тромбоцитов (аутоиммунные процессы). После массивных кровотечений с последующими внутривенными вливаниями плазмозаменителей количество тромбоцитов может снизиться до 20-25% от исходной величины вследствие разведения.

Повышение количества тромбоцитов (тромбоцитозы) может быть реактивным, сопровождающим определенные патологические состояния (как результат продукции иммуномодуляторов, стимулирующих образование тромбоцитов) или первичным (вследствие дефектов в системе гемопоэза).

Кровяные пластинки, которые призваны бороться с внезапными кровопотерями, называются тромбоцитами. Они аккумулируются в местах повреждения любых сосудов и закупоривают их специальной пробкой.

Внешний вид пластинок

Под микроскопом можно рассмотреть строение тромбоцитов. Они выглядят как диски, диаметр которых колеблется от 2 до 5 мкм. Объем каждого из них составляет порядка 5-10 мкм 3 .

По своей структуре тромбоциты являются сложным комплексом. Он представлен системой микротрубочек, мембран, органелл и микрофиламентов. Современные технологии позволили разрезать распластанную пластинку на две части и выделить в ней несколько зон. Именно так смогли определить особенности строения тромбоцитов. Каждая пластинка состоит из нескольких слоев: периферическая зона, золь-гель, внутриклеточные органеллы. У каждого из них свои функции и предназначение.

Внешний слой

Периферическая зона состоит из трехслойной мембраны. Строение тромбоцитов таково, что на внешней ее стороне находится слой, в котором содержатся плазматические факторы, отвечающие за специальные рецепторы и энзимы. Толщина его не превышает 50 нм. Рецепторы этого слоя тромбоцитов отвечают за активацию указанных клеток и их способность к адгезии (присоединению к субэндотелию) и агрегации (возможности соединяться между собой).

Также мембрана содержит особый фосфолипидный фактор 3 или так называемую матрицу. Эта часть отвечает за формирование активных коагуляционных комплексов вместе с плазменными факторами, отвечающими за свертывание крови.

Помимо этого, в ней находится Важным ее компонентом является фосфолипаза А. Именно она образовывает указанную кислоту, необходимую для синтеза простагландинов. Они, в свою очередь, предназначены для формирования тромбоксана А 2 , который необходим для мощной агрегации тромбоцитов.

Гликопротеины

Строение тромбоцитов не ограничивается наличием внешней мембраны. В ее липидном бислое находятся гликопротеины. Именно они предназначены для связывания тромбоцитов.

Так, гликопротеин I является рецептором, который отвечает за присоединение к коллагену субэндотелия указанных кровяных клеток. Он обеспечивает адгезию пластинок, их распластывание и связывание их еще с одним белком - фибронектином.

Гликопротеин II предназначен для всех видов агрегации тромбоцитов. Он обеспечивает связывание на этих кровяных клетках фибриногена. Именно благодаря этому беспрепятственно продолжается процесс агрегации и сокращения (ретракции) сгустка.

А вот гликопротеин V предназначен для поддержания соединения тромбоцитов. Он гидролизируется тромбином.

Если в указанном слое мембраны тромбоцитов снижается содержание различных гликопротеинов, то это становится причиной повышенной кровоточивости.

Золь-гель

Вдоль второго слоя тромбоцитов, располагающегося под мембраной, идет кольцо микротрубочек. Строение тромбоцитов в крови человека таково, что указанные трубочки являются их сократительным аппаратом. Так, при стимуляции этих пластин кольцо сжимается и смещает гранулы к центру клеток. В результате они сжимаются. Все это вызывает секрецию их содержимого наружу. Это возможно благодаря специальной системе открытых канальцев. Такой процесс называется «централизация гранул».

При сокращении кольца микротрубочек также становится возможным образование псевдоподий, что только благоприятствует увеличению способности агрегации.

Внутриклеточные органеллы

Третий слой содержит гликогеновые гранулы, митохондрии, α-гранулы, плотные тела. Это так называемая зона органелл.

Плотные тела содержат в себе АТФ, АДФ, серотонин, кальций, адреналин и норадреналин. Все они необходимы для того, чтобы могли работать тромбоциты. Строение и функции этих клеток обеспечивают адгезию и Так, АДФ вырабатывается при прикреплении тромбоцитов к стенкам сосудов, он же отвечает за то, чтобы указанные пластинки из кровотока продолжали присоединяться к тем, которые уже приклеились. Кальций регулирует интенсивность адгезии. Серотонин вырабатывается тромбоцитом при высвобождении гранул. Именно он обеспечивает в месте разрыва их просвета.

Альфа-гранулы, находящиеся в зоне органелл, способствуют формированию тромбоцитарных агрегатов. Они отвечают за стимуляцию роста гладких мышц, восстановление стенок сосудов, гладких мышц.

Процесс образования клеток

Чтобы разобраться с тем, каково строение тромбоцитов человека, необходимо понять, откуда они берутся и как формируются. Процесс их появления сосредоточен в Он разделяется на несколько стадий. Вначале формируется колониеобразующая мегакариоцитарная единица. На протяжении нескольких этапов она трансформируется в мегакариобласт, промегакариоцит и в конечном итоге в тромбоцит.

Ежедневно человеческий организм продуцирует порядка 66000 этих клеток в расчете на 1 мкл крови. У взрослого человека в сыворотке должно находиться от 150 до 375, у ребенка от 150 до 250 х 10 9 /л тромбоцитов. При этом 70 % их них циркулирует по организму, а 30 % накапливаются в селезенке. В случае необходимости этот и высвобождает кровяные пластинки.

Основные функции

Для того чтобы понять, для чего в организме необходимы кровяные пластинки, мало разобраться с тем, какие особенности строения тромбоцитов человека. Они предназначены в первую очередь для формирования первичной пробки, которая должна закрыть поврежденный сосуд. Кроме того, тромбоциты предоставляют свою поверхность для того, чтобы ускорить реакции плазменного свертывания.

Помимо этого, было установлено, что они нужны для регенерации и заживления различных поврежденных тканей. Тромбоциты продуцируют факторы роста, предназначенные для стимуляции развития и деления всех поврежденных клеток.

Примечательно, что они могут быстро и необратимо переходить в новое состояние. Стимулом для их активации может стать любое изменение окружающей среды, в том числе и простое механическое напряжение.

Особенности тромбоцитов

Живут указанные кровяные клетки недолго. В среднем продолжительность их существования составляет от 6,9 до 9,9 дней. После окончания указанного периода они разрушаются. В основном этот процесс проходит в костном мозге, но также в меньшей степени он идет в селезенке и печени.

Специалисты выделяют пять различных типов кровяных пластинок: юные, зрелые, старые, формы раздражения и дегенеративные. В норме в организме должно быть более 90% зрелых клеток. Только в таком случае строение тромбоцитов будет оптимальным, а они смогут выполнять все свои функции в полном объеме.

Важно понимать, что снижение концентрации этих является причиной кровотечений, которые сложно остановить. А увеличение их количества является причиной развития тромбоза - появления сгустков крови. Они могут закупоривать кровеносные сосуды в различных органах тела или полностью перекрывать их.

В большинстве случаев при различных проблемах строение тромбоцитов не меняется. Все заболевания связаны с изменением их концентрации в кровеносной системе. Уменьшение их количества называется тромбоцитопения. Если их концентрация увеличивается, то речь идет о тромбоцитозе. При нарушении активности этих клеток диагностируют тромбастению.

Гигантские полиплоидные клетки костного мозга - мегакариоциты - родоначальные элементы, из которых образуются кровяные пластинки - тромбоциты .

Источником их служат клетки-предшественники миелопоэза, превращающиеся в процессе деления и созревания в унипотентные, чувствительные к тромбоцитопоэтину клетки (УЧТК). Дальнейшее созревание клеток этого ряда протекает следующим образом: УЧТК > мегакариобласт > промегакариоцит (базофильный мегакариоцит I степени зрелости) > зернистый мегакариоцит II степени зрелости > пластиночный мегакариоцит III степени зрелости.

В нормальных условиях время созревания клеток мегакариоцитарного ряда колеблется в пределах 55-94 ч. Если в организме не образуется тромбоцитопоэтин, что характерно для одной из форм наследственных тромбоцитопений, то созревание клеток останавливается на стадии УЧТК.

После образования мегакариобластов деление клеток практически прекращается, но интенсивно проходит эндомитоз. В результате этого хромосомный набор в каждой клетке увеличивается с 2 до 4, 8, 16, 32 и даже 64. Степень полиплоидии у разных мегакариоцитов неодинакова, но преобладают клетки с 8- и 16-кратным набором хромосом, тогда как клетки с набором менее 8 почти не встречаются.

Развитие полиплоидии сопровождается резким увеличением размеров клеток, преимущественно за счет увеличения цитоплазмы. В результате этого мегакариоциты II и III степени зрелости достигают 60-100 мкм в диаметре, а иногда и более.

Мегакариобласт

Мегакариобласт - клетка округлой формы, не отличающаяся по величине от других бластов, но с более грубой структурой ядра. Ядро либо округлое одиночное, либо состоит из двух, тесно прилегающих друг к другу бобовидных долек. Оно интенсивно окрашено, с сетчатым или сплетенным в клубок хроматином, содержит одно или несколько ядрышек. Цитоплазма базофильна, лишена зернистости, окружает ядро сравнительно узким ободком.

При очень сильном раздражении тромбоцитопоэза мегакариобласты могут образовывать тонкие отростки, от которых отшнуровываются примитивные голубые кровяные пластинки. Однако основным источником таких пластинок служат промегакариоциты.

Промегакариоциты

Промегакариоциты , или базофильные мегакариоциты I степени зрелости - полиплоидные клетки больших размеров (30-60 мкм в диаметре) с интенсивно окрашивающимся ядром грубой структуры, на котором обнаруживаются вдавления, перетяжки, дольчатость. Большой размер клеток определяется в основном увеличением массы цитоплазмы, которая сохраняет базофильность и почти полностью лишена зернистости, лишь иногда в ней можно увидеть немногочисленные азурофильные зернышки.

При стимуляции тромбоцитопоэза (например, при тромбоцитопении) от промегакариоцитов начинают отделяться в большом количестве крупные беззернистые голубые кровяные пластинки, иногда напоминающие большие обрывки цитоплазмы материнской клетки. Учитывая, что промегакариоциты могут отщеплять тромбоциты, некоторые авторы считают более правильным называть их базофильными мегакариоцитами I степени зрелости.

Зернистые мегакариоциты II степени зрелости

Зернистые мегакариоциты II степени зрелости , как явствует из их названия, отличаются тем, что цитоплазма этих клеток заполнена обильной азурофильной зернистостью, утрачивая при этом базофильность, и окрашивается в красновато-сиреневый цвет. Размеры клеток еще более возрастают (до 60- 100 мкм и более) с дальнейшим изменением ядерно-цитоплазматического соотношения в пользу цитоплазмы. Усиливаются деформация и фрагментация ядер, приобретающих формы корзинки, цепи, оленьих рогов и т. п.

Пластиночные мегакариоциты III степени зрелости

В пластиночных мегакариоцитах III степени зрелости в цитоплазме обнаруживается не только обильная азу- рофильная зернистость, но и отчетливая мелкоячеистая сеть липидно-белковых мембран, которая разделяет цитоплазму на множество ячеек, каждая из которых является будущим тромбоцитом. Разделительные мембраны происходят из оболочки мегакариоцита, врастая в цитоплазму клетки, ветвясь и соединяясь друг с другом.

По уточненным данным, каждый зрелый мегакариоцит образует около 3000-4000 тромбоцитов, причем отшнуровка этих клеток происходит не постепенно, а как бы залпами. Поэтому в мазках костного мозга обнаруживаются мегакариоциты, окруженные сотнями только что выделившихся тромбоцитов (при изготовлении мазка они часто «размазываются» вслед за сдвигающимся мегакариоцитом, как шлейф или хвост кометы). При повышенной потребности организма в тромбоцитах последние легко отделяются также от зернистых мегакариоцитов и даже от базофильных мегакариоцитов (промегакариоцитов). При этом можно отметить очень быстрое вымывание тромбоцитов из костного мозга в кровоток, в связи с чем в миелограмме, наряду с нормальным или даже повышенным общим содержанием клеток мегакариоцитарного ряда, уменьшается количество клеток, достигающих III степени зрелости, а также клеток, окруженных только что отшнуровавшимися тромбоцитами.

До недавнего времени такую картину, свойственную идиопатической тромбоцитопенической пурпуре и всем другим видам тромбоцитопении с укороченным периодом существования тромбоцитов, ошибочно трактовали как признак замедления созревания и недостаточной продуктивности (функциональной неполноценности) мегакариоцитов. Однако в настоящее время доказана полная несостоятельность подобных воззрений. В частности, недостаточное созревание (недозревание) мегакариоцитов при иммунной тромбоцитопении связывают с преждевременным расходованием резерва этих клеток на выработку тромбоцитов, о чем свидетельствуют как повышенное количество в крови крупных недозревших голубых кровяных пластинок, лишенных грануломера, так и резкое укорочение (до нескольких часов) продолжительности жизни меченых тромбоцитов в кровотоке больного.

Согласно данным литературы, содержание клеток мегакариоцитарного ряда в пунктатах костного мозга может быть различным - от 0,01 до 1,8 %, и этот показатель, как и другие параметры нормальной миелограммы, следует считать относительным. Клиническое значение имеют только крайние отклонения от нормы: амегакариоцитоз - почти полное исчезновение этих клеток из костного мозга либо гипермегакариоцитоз - значительное увеличение их количества. Но и в этом случае следует выяснить, насколько обнаруженные сдвиги согласуются с изменениями содержания тромбоцитов в крови. Так, выявление амегакариоцитоза костного мозга при постоянно нормальном количестве тромбоцитов в крови, несомненно, является артефактом, и ему не следует придавать никакого значения. Напротив, тромбоцитопении может протекать как при нормальном или повышенном содержании мегакариоцитов в костном мозге (что характерно для ускоренной гибели или повышенного потребления тромбоцитов в организме), так и при амегакариоцитозе, вследствие которого снижается продукция тромбоцитов.

Определенное диагностическое значение имеет подсчет в пунктате костного мозга различных клеток мегакариоцитарного ряда. В норме 2-6 % этих клеток составляют мегакариобласты, 5-20 % -промегакариоциты (базофильные мегакариоциты), 60- 70 % - зернистые и пластиночные мегакариоциты и около 20 % - метамегакариоциты и голые ядра.

Тромбоциты - Кровяные пластинки

Тромбоциты, или кровяные пластинки - лишенные ядра клетки, образовавшиеся из цитоплазмы и оболочек мегакариоцитов. Они уплощены, имеют вид двояковыпуклых линз круглой или овальной формы. При контакте с какой-либо поверхностью в процессе исследования, при повреждении кровеносных сосудов, а также под влиянием ряда биологически активных веществ (АДФ, адреналина и др.) они быстро набухают, приобретают мешотчатую форму, образуют много нитчатых и древовидных отростков-псевдоподий. Особенно легко этому подвергаются крупные молодые тромбоциты, в связи с чем на электронных микрофотограммах они часто имеют неправильную полигональную форму.

Размеры нормальных тромбоцитов колеблются от 1,5 до 3,5 мкм, причем, чем моложе клетки, тем они крупнее и тяжелее. Поэтому тромбоцитометрия (подобно определению эритроцитометрической кривой Прайс-Джонса), как и разделение их по массе в градиенте плотности, имеет важное диагностическое значение. В норме около 30- 40 % тромбоцитов относятся к молодой популяции; они имеют диаметр более 2,5 мкм.

При идиопатической тромбоцитопенической пурпуре (ИТП) и других тромбоцитопениях, протекающих с усиленным воспроизводством тромбоцитов в костном мозге, увеличивается содержание в крови макротромбоцитов диаметром 4-5 мкм, среди которых немало беззернистых голубых кровяных пластинок, отшнуровавшихся от недозревших базофильных мегакариоцитов.

При врожденных качественных дефектах тромбоциты могут быть либо гигантскими (мегатромбоциты) - до 6-10 мкм в диаметре, что характерно, в частности, для тромбоцитодистрофии (болезни Бернара-Сулье) и аномалии Мея-Хегглина, либо очень маленькими - менее 1,5 мкм (при синдроме Вискотта-Олдрича).

Если определение размера и массы тромбоцитов имеет важное диагностическое значение, то при анализе тромбоцитограммы обнаруживается чрезвычайная вариабельность в распределении различных форм кровяных пластинок, в связи с чем вывести нормальную тромбоцитограмму не удается. Поэтому в современных руководствах по физиологии и патологии тромбоцитов ссылки на тромбоцитограмму, как правило, отсутствуют, что подчеркивает полную бесполезность этого трудоемкого подсчета.

При обычной световой микроскопии в тромбоцитах обнаруживаются центральная зернистая часть - грануломер и периферическая беззернистая стекловидная зона - гиаломер . Однако во многих клетках такого разграничения, обусловленного контактом тромбоцитов с чужеродной поверхностью, обнаружить не удается и зернистость располагается в них равномерно.

Данные электронной микроскопии показывают, что тромбоциты, подобно другим клеткам, покрыты трехслойной липидно-белковой мембраной, в состав которой входят сиалогликопротеины, сократительный белок - актомиозин (тромбостенин), аденилциклаза, ряд гликозилтрансфераз, фосфолипидные микромембраны, активирующие свертывание крови (фактор 3 тромбоцитов, или кровяной тромбопластин). Дефицит этих веществ, свойственный ряду наследственных тромбоцитопатий, лежит в основе патологии и дисфункции тромбоцитов.

При тромбастении Гланцманна (болезни Гланцманна-Негели) в оболочках тромбоцитов отсутствуют крупномолекулярные гликопротеиды, при одной из наследственных тромбоцитопатий в них нет аденилциклазы и т. д.

Наружная оболочка тромбоцитов покрыта белковым слоем толщиной 10- 20 нм, в котором в значительном количестве концентрируются некоторые белки плазмы, в том числе факторы свертывания крови (I, VIII, XI, XIII и др.), фактор Виллебранда, некоторые иммуноглобулины и другие белки. Для части из этих веществ на оболочках тромбоцитов есть специальные рецепторы. Эта цитоплазматическая «атмосфера» тромбоцитов, которой лишены другие клетки крови, имеет большое значение в осуществлении локальных гемостатических реакций.

Оболочка тромбоцита образует большое количество глубоких складок и каналов, проникающих в глубь клетки и пронизывающих ее в разных направлениях. Это придает тромбоциту губчатую структуру, обеспечивает хороший контакт глубоких слоев клетки с окружающим ее оболочку белковым слоем и плазмой, облегчает выделение в окружающую среду различных биологически активных веществ, что имеет первостепенное значение для полноценного гемостаза. Выделение факторов тромбоцитов в плазму называют реакцией освобождения.

При электронной микроскопии внутри тромбоцитов обнаруживаются следующие структурные элементы:

  1. поперечные и продольные срезы мембранных впячиваний и каналов;
  2. большое количество плотных телец или гранул, являющихся местом накопления и хранения АТФ, АДФ, серотонина, кальция и, вероятно, фактора 4 тромбоцитов (антигепаринового). Эти гранулы и содержащиеся в них вещества выделяются в окружающую среду при реакции освобождения и имеют первостепенное значение в осуществлении гемостаза;
  3. α-гранулы, являющиеся аналогами лизосом, в состав которых входят кислые гидролазы и катепсины (образования примерно такой же величины, как и плотные гранулы, но с умеренной или малой плотностью);
  4. митохондрии, или β-гранулы, немногочисленные, имеющие низкую плотность и сравнительно простые по структуре;
  5. гликогеновые гранулы - плотные, с неровными контурами, состоящие из отдельных зерен;
  6. микромембраны и микротрубочки, примыкающие к оболочке клетки и содержащие актомиозиноподобный сократительный белок - тромбостенин, от которого зависят изменение формы кровяной пластинки, консолидация и уплотнение тромбоцитарной пробки в сосуде, ретракция кровяного сгустка;
  7. структуры, которые соответствуют рибосомам.

Нормальное содержание тромбоцитов в крови человека колеблется от 180 до 320 Г в 1 л. Продолжительность их жизни составляет 7-10 дней, причем от 1/4 до 1/3 всех имеющихся тромбоцитов депонируется в селезенке, где каждый тромбоцит проводит около 1/4 части своей жизни.

При спленомегалии, обусловленной портальной гипертензией и рядом других причин, селезеночный пул тромбоцитов увеличивается и соответственно уменьшается содержание этих клеток в крови. Значительную часть тромбоцитов поглощает эндотелий капилляров и других мелких сосудов. Вторым основным местом их гибели является селезенка, а при портальной гипертензии - и печень.