Найти значение выражение дробями как решать. Сложные выражения с дробями. Порядок действий

Числителем, а то, на которое делят - знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель - в нижней, то есть вместо 2/3 можно встретить: ⅔.

Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби на числитель другой. Запишите результат в числитель новой дроби . После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби . Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15).

Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Источники:

  • Основные задачи на дроби

Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

Вам понадобится

  • - калькулятор

Инструкция

Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
- Переведение дробей в неправильный вид:
- 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
- Суммирование отдельно целых и дробных частей слагаемых:
- 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

Перепишите их через разделитель «:» и продолжите обычное деление.

Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

Обратите внимание

Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

Полезный совет

При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.

В 5 классе средней школы вводится представление дроби. Дробь – это число, состоящее из целого числа долей единиц. Обычные дроби записываются в виде ±m/n, число m называют числителем дроби, число n – его знаменателем. Если модуль знаменателя огромнее модуля числителя, скажем 3/4, то дробь именуется верной, в отвратном случае – неправильной. Дробь может содержать целую часть, скажем 5 * (2/3).К дробям дозволено использовать разные арифметические операции.

Инструкция

1. Приведение к всеобщему знаменателю.Пускай даны дроби a/b и c/d.- В первую очередь находится число НОК(наименьшее всеобщее кратное) для знаменателей дробей.- Числитель и знаменатель первой дроби умножается на НОК/b- Числитель и знаменатель 2-й дроби умножается на НОК/dПример приведён на рисунке.Для сопоставления дробей их нужно привести к всеобщему знаменателю, после этого сравнить числители. Скажем, 3/4 < 4/5, см. рисунок.

2. Сложение и вычитание дробей.Для нахождения суммы 2-х обычных дробей их нужно привести к всеобщему знаменателю, позже чего сложить числители, оставив знаменатель без изменений. Пример сложения дробей 1/2 и 1/3 приведён на рисунке.Разность дробей находится аналогичным образом, позже нахождения всеобщего знаменателя, числители дробей вычитаются, см. пример на рисунке.

3. Умножение и деление дробей.При умножении обычных дробей, числители и знаменатели перемножаются между собой.Для того, дабы поделить две дроби, нужно получить дробь обратную 2-й дроби, т.е. поменять его числитель и знаменатель местами, позже чего произвести умножение полученных дробей.

Модуль представляет собой безусловную величину выражения. Для обозначения модуля используют прямые скобки. Арестанты в них значения считаются взятыми по модулю. Решение модуля состоит в раскрытии модульных скобок по определенным правилам и нахождении множества значений выражения. В большинстве случаев модуль раскрывается таким образом, что подмодульное выражение получает ряд позитивных и негативных значений с том числе и нулевое значение. Исходя из данных свойств модуля, составляются и решаются дальше уравнения и неравенства начального выражения.

Инструкция

1. Запишите начальное уравнение с модулем. Для его решения раскройте модуль. Разглядите всякое подмодульное выражение. Определите, при каком значении входящих в него незнакомых величин выражение в модульных скобках обращается в нуль.

2. Для этого приравняйте подмодульное выражение к нулю и обнаружьте решение получившегося уравнения. Запишите обнаруженные значения. Таким же образом определите значения незнакомой переменной для всего модуля в заданном уравнении.

3. Разглядите случаи существования переменных, когда они хороши от нуля. Для этого запишите систему неравенств для всех модулей начального уравнения. Неравенства обязаны охватывать все допустимые значения переменной на числовой прямой.

4. Нарисуйте числовую прямую и отложите на ней полученные значения. Значения переменной в нулевом модуле будут служить ограничениями при решении модульного уравнения.

5. В начальном уравнении надобно раскрыть модульные скобки, меняя знак выражения так, дабы значения переменной соответствовали отображенным на числовой прямой. Решите полученное уравнение. Обнаруженное значение переменной проверьте на лимитация, заданное модулем. Если решение удовлетворяет условию, значит оно правдиво. Не удовлетворяющие ограничениям корни обязаны отбрасываться.

6. Аналогичным образом раскрывайте модули начального выражения с учетом знака и высчитывайте корни получаемого уравнения. Запишите все полученные корни, удовлетворяющие неравенствам ограничения.

Дробные числа разрешают выражать в различном виде точное значение величины. С дробями дозволено исполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Дабы обучиться решать дроби , нужно помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, всеобщего знаменателя. Некоторые арифметические действия позже выполнения требуют сокращения дробной части итога.

Вам понадобится

  • – калькулятор

Инструкция

1. Наблюдательно посмотрите на данные числа. Если среди дробей есть десятичные и непрвильные, изредка комфортнее сначала исполнить действия с десятичными, а после этого перевести их в неверный вид. Можете перевести дроби в такой вид первоначально, записав значение позже запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, поделив числа выше и ниже черты на один делитель. Дроби, в которых выдается целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к итогу числитель. Данное значения станет новым числителем дроби . Дабы выделить целую часть из изначально неправильной дроби , нужно поделить числитель на знаменатель. Целый итог записать слева от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью допустимо выполнение действий отдельно вначале для целой, а после этого для дробной частей. Скажем, сумма 1 2/3 и 2 ? может быть вычислена двумя методами:- Переведение дробей в неверный вид:- 1 2/3 + 2 ? = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;- Суммирование отдельно целых и дробных частей слагаемых:- 1 2/3 + 2 ? = (1+2) + (2/3 + ?) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

2. Для неправильных дробей с различными значениями под чертой обнаружьте всеобщий знаменатель. Скажем, для 5/9 и 7/12 всеобщим знаменателем будет 36. Для этого числитель и знаменатель первой дроби нужно умножить на 4 (получится 28/36), а 2-й – на 3 (получится 15/36). Сейчас можете исполнить нужные расчёты.

3. Если вы собираетесь вычислять сумму либо разность дробей, для начала запишите обнаруженный всеобщий знаменатель под черту. Исполните нужные действия между числителями, а итог запишите над чертой новой дроби . Таким образом, новым числителем станет разность либо сумма числителей изначальных дробей.

4. Для расчёта произведения дробей перемножьте числители дробей и запишите итог на место числителя итоговой дроби . То же самое проделайте для знаменателей. При делении одной дроби на иную запишите одну дробь, а после этого умножьте её числитель на знаменатель 2-й. При этом знаменатель первой дроби умножается соответственно на числитель 2-й. При этом происходит оригинальный переворот 2-й дроби (делителя). Итоговая дробь будет состоять из итогов умножения числителей и знаменателей обеих дробей. Нетрудно обучиться решать дроби , записанные в условии в виде «четырёхэтажной» дроби . Если черта разделяет две дроби , перепишите их через разграничитель «:» и продолжите обыкновенное деление.

5. Для приобретения финального итога полученную дробь сократите, поделив числитель и знаменатель на одно целое число, наибольшее допустимое в данном случае. При этом выше и ниже черты обязаны быть целые числа.

Обратите внимание!
Не исполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, дабы при умножении на него числителя и знаменателя всякой дроби в итоге знаменатели обеих дробей были равны.

Полезный совет
При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, либо знаменатель, дроби. Скажем, полтора килограмма риса в виде дроби запишется дальнейшим образом: 1 ? кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для комфорта вычислений такую дробь неизменно дозволено записать в неправильном виде: 1 2/10 кг картофеля. Для облегчения дозволено сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере допустимо деление на 2. В итоге получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь исполнять арифметические действия, представлены в одном виде.

Если вы пишете курсовую работу либо составляете какой-нибудь иной документ, содержащий расчетную часть, то вам никуда не деться от дробных выражений, которые также надобно напечатать. Как это сделать, разглядим дальше.

Инструкция

1. Кликните один раз по пункту меню «Вставка», после этого выберите пункт «Символ». Это один из самых примитивных методов вставки дроби в текст. Заключается он в дальнейшем. В комплекте готовых символов есть дроби . Их число, как водится, невелико, но если вам в тексте необходимо написать?, а не 1/2, то для вас сходственный вариант будетсамым оптимальным. Помимо того, число символов дробей может зависеть и от шрифта. Скажем, для шрифта Times New Roman дробей немножко поменьше, чем для того же Arial. Варьируйте шрифтами, дабы обнаружить самый наилучший вариант, если дело касается примитивных выражений.

2. Кликните по пункту меню «Вставка» и выберите подпункт «Объект». Перед вами появится окно с перечнем допустимых объектов для вставки. Выберите среди них Microsoft Equation 3.0. Это приложение поможет вам печатать дроби . Причем не только дроби , но и трудные математические выражения, содержащие разные тригонометрические функции и прочие элементы. Двукратно кликните по этому объекту левой кнопкой мышки. Перед вами появится окно, содержащее много символов.

3. Дабы напечатать дробь, выберите символ изображающий дробь с пустым числителем и знаменателем. Кликните по нему один раз левой кнопкой мыши. Появится дополнительное меню, уточняющее схему самой дроби . Может быть несколько ее вариантов. Выберите особенно для вас подходящий и кликните по нему один раз левой кнопкой мыши.

4. Введите в числителе и знаменателе дроби все необходимые данные. Это будет протекать теснее непринужденно на листе документа. Дробь будет вставлена отдельным объектом, тот, что в случае необходимости дозволено переместить в всякое место документа. Вы можете напечатать многоэтажные дроби . Для этого разместите в числитель либо знаменатель (как вам надобно) еще одну дробь, которую дозволено предпочесть в окне того же приложения.

Видео по теме

Алгебраическая дробь - это выражение вида А/В, где буквы А и В обозначают всякие числовые либо буквенные выражения. Нередко числитель и знаменатель в алгебраических дробях имеют массивный вид, но действия с такими дробями следует делать по тем же правилам, что и действия с обычными, где числитель и знаменатель - целые правильные числа.

Инструкция

1. Если даны смешанные дроби , переведите их в неправильные (дробь, в которой числитель огромнее знаменателя): умножьте знаменатель на целую часть и прибавьте числитель. Так число 2 1/3 превратится в 7/3. Для этого 3 умножают на 2 и прибавляют единицу.

2. Если нужно перевести десятичную дробь в неправильную, то представьте ее как деление числа без запятой на единицу со столькими нулями, сколько чисел стоит позже запятой. Скажем, число 2,5 представьте как 25/10 (если сократить, то получится 5/2), а число 3,61 – как 361/100. Оперировать с неправильными дробями нередко легче, чем со смешанными либо десятичными.

3. Если дроби имеют идентичные знаменатели, а вам нужно их сложить, то примитивно сложите числители; знаменатели остаются без изменений.

4. При необходимости произвести вычитание дробей с идентичными знаменателями из числителя первой дроби вычтите числитель 2-й дроби. Знаменатели при этом также не меняются.

5. Если нужно сложить дроби либо вычесть одну дробь из иной, а они имеют различные знаменатели, приведите дроби к всеобщему знаменателю. Для этого обнаружьте число, которое будет наименьшим всеобщим кратным (НОК) обоим знаменателям либо нескольким, если дробей огромнее 2-х. НОК - это число, которое разделится на знаменатели всех данных дробей. К примеру, для 2 и 5 это число 10.

6. Позже знака «равно» проведите горизонтальную черту и запишите в знаменатель это число (НОК). Проставьте к всякому слагаемому добавочные множители - то число, на которое нужно домножить и числитель, и знаменатель, дабы получить НОК. Ступенчато умножайте числители на добавочные множители, сберегая знак сложения либо вычитания.

7. Посчитайте итог, сократите его при необходимости либо выделите целую часть. Для примера – нужно сложить? и?. НОК для обеих дробей - 12. Тогда добавочный множитель к первой дроби - 4, ко 2-й - 3. Итого: ?+?=(1·4+1·3)/12=7/12.

8. Если дан пример на умножение, перемножьте между собой числители (это будет числитель итога) и знаменатели (получится знаменатель итога). В этом случае к всеобщему знаменателю их приводить не нужно.

9. Дабы поделить дробь на дробь, нужно опрокинуть вторую дробь «вверх ногами» и перемножить дроби. То есть а/b: с/d = a/b · d/c.

10. Раскладывайте числитель и знаменатель на множители, если это требуется. Скажем, переносите всеобщий множитель за скобку либо раскладывайте по формулам сокращённого умножения, дабы после этого дозволено было при необходимости сократить числитель и знаменатель на НОД – минимальный всеобщий делитель.

Обратите внимание!
Числа складывайте с числами, буквы одного рода с буквами того же рода. Скажем, невозможно сложить 3a и 4b, значит в числителе так и останется их сумма либо разность - 3a±4b.

Видео по теме

В данной статье рассмотрено, как находить значения математических выражений. Начнем с простых числовых выражений и далее будем рассматривать случаи по мере возрастания их сложности. В конце приведем выражение, содержащее буквенные обозначения, скобки, корни, специальные математические знаки, степени, функции и т.д. Всю теорию, по традиции, снабдим обильными и подробными примерами.

Yandex.RTB R-A-339285-1

Как найти значение числового выражения?

Числовые выражения, помимо прочего, помогают описывать условие задачи математическим языком. Вообще математические выражения могут быть как очень простыми, состоящими из пары чисел и арифметических знаков, так и очень сложными, содержащими функции, степени, корни, скобки и т.д. В рамках задачи часто необходимо найти значение того или иного выражения. О том, как это делать, и пойдет речь ниже.

Простейшие случаи

Это случаи, когда выражение не содержит ничего, кроме чисел и арифметических действий. Для успешного нахождения значений таких выражений понадобятся знания порядка выполнения арифметических действий без скобок, а также умение выполнять действия с различными числами.

Если в выражении есть только числа и арифметические знаки " + " , " · " , " - " , " ÷ " , то действия выполняются слева направо в следующем порядке: сначала умножение и деление, затем сложение и вычитание. Приведем примеры.

Пример 1. Значение числового выражения

Пусть нужно найти значения выражения 14 - 2 · 15 ÷ 6 - 3 .

Выполним сначала умножение и деление. Получаем:

14 - 2 · 15 ÷ 6 - 3 = 14 - 30 ÷ 6 - 3 = 14 - 5 - 3 .

Теперь проводим вычитание и получаем окончательный результат:

14 - 5 - 3 = 9 - 3 = 6 .

Пример 2. Значение числового выражения

Вычислим: 0 , 5 - 2 · - 7 + 2 3 ÷ 2 3 4 · 11 12 .

Сначала выполняем преобразование дробей, деление и умножение:

0 , 5 - 2 · - 7 + 2 3 ÷ 2 3 4 · 11 12 = 1 2 - (- 14) + 2 3 ÷ 11 4 · 11 12

1 2 - (- 14) + 2 3 ÷ 11 4 · 11 12 = 1 2 - (- 14) + 2 3 · 4 11 · 11 12 = 1 2 - (- 14) + 2 9 .

Теперь займемся сложением и вычитанием. Сгруппируем дроби и приведем их к общему знаменателю:

1 2 - (- 14) + 2 9 = 1 2 + 14 + 2 9 = 14 + 13 18 = 14 13 18 .

Искомое значение найдено.

Выражения со скобками

Если выражение содержит скобки, то они определяют порядок действий в этом выражении. Сначала выполняются действия в скобках, а потом уже все остальные. Покажем это на примере.

Пример 3. Значение числового выражения

Найдем значение выражения 0 , 5 · (0 , 76 - 0 , 06) .

В выражении присутствуют скобки, поэтому сначала выполняем операцию вычитания в скобках, а уже потом - умножение.

0 , 5 · (0 , 76 - 0 , 06) = 0 , 5 · 0 , 7 = 0 , 35 .

Значение выражений, содержащих скобки в скобках, находится по такому же принципу.

Пример 4. Значение числового выражения

Вычислим значение 1 + 2 · 1 + 2 · 1 + 2 · 1 - 1 4 .

Выполнять действия будем начиная с самых внутренних скобок, переходя к внешним.

1 + 2 · 1 + 2 · 1 + 2 · 1 - 1 4 = 1 + 2 · 1 + 2 · 1 + 2 · 3 4

1 + 2 · 1 + 2 · 1 + 2 · 3 4 = 1 + 2 · 1 + 2 · 2 , 5 = 1 + 2 · 6 = 13 .

В нахождении значений выражений со скобками главное - соблюдать последовательность действий.

Выражения с корнями

Математические выражения, значения которых нам нужно найти, могут содержать знаки корня. Причем, само выражение может быть под знаком корня. Как быть в таком случае? Сначала нужно найти значение выражения под корнем, а затем извлечь корень из числа, полученного в результате. По возможности от корней в числовых выражениях нужно лучше избавляться, заменяя из на числовые значения.

Пример 5. Значение числового выражения

Вычислим значение выражения с корнями - 2 · 3 - 1 + 60 ÷ 4 3 + 3 · 2 , 2 + 0 , 1 · 0 , 5 .

Сначала вычисляем подкоренные выражения.

2 · 3 - 1 + 60 ÷ 4 3 = - 6 - 1 + 15 3 = 8 3 = 2

2 , 2 + 0 , 1 · 0 , 5 = 2 , 2 + 0 , 05 = 2 , 25 = 1 , 5 .

Теперь можно вычислить значение всего выражения.

2 · 3 - 1 + 60 ÷ 4 3 + 3 · 2 , 2 + 0 , 1 · 0 , 5 = 2 + 3 · 1 , 5 = 6 , 5

Часто найти значение выражения с корнями часто нужно сначала провести преобразование исходного выражения. Поясним это на еще одном примере.

Пример 6. Значение числового выражения

Сколько будет 3 + 1 3 - 1 - 1

Как видим, у нас нет возможности заменить корень точным значением, что усложняет процесс счета. Однако, в данном случае можно применить формулу сокращенного умножения.

3 + 1 3 - 1 = 3 - 1 .

Таким образом:

3 + 1 3 - 1 - 1 = 3 - 1 - 1 = 1 .

Выражения со степенями

Если в выражении имеются степени, их значения нужно вычислить прежде, чем приступать ко всем остальным действиям. Бывает так, что сам показатель или основание степени являются выражениями. В таком случае, сначала вычисляют значение этих выражений, а затем уже значение степени.

Пример 7. Значение числового выражения

Найдем значение выражения 2 3 · 4 - 10 + 16 1 - 1 2 3 , 5 - 2 · 1 4 .

Начинаем вычислять по порядку.

2 3 · 4 - 10 = 2 12 - 10 = 2 2 = 4

16 · 1 - 1 2 3 , 5 - 2 · 1 4 = 16 * 0 , 5 3 = 16 · 1 8 = 2 .

Осталось только провести операцию сложение и узнать значение выражения:

2 3 · 4 - 10 + 16 1 - 1 2 3 , 5 - 2 · 1 4 = 4 + 2 = 6 .

Также часто целесообразно бывает провести упрощение выражения с использованием свойств степени.

Пример 8. Значение числового выражения

Вычислим значение следующего выражения: 2 - 2 5 · 4 5 - 1 + 3 1 3 6 .

Показатели степеней опять таковы, что их точные числовые значения получить не удастся. Упростим исходное выражение, чтобы найти его значение.

2 - 2 5 · 4 5 - 1 + 3 1 3 6 = 2 - 2 5 · 2 2 5 - 1 + 3 1 3 · 6

2 - 2 5 · 2 2 5 - 1 + 3 1 3 · 6 = 2 - 2 5 · 2 2 · 5 - 2 + 3 2 = 2 2 · 5 - 2 - 2 5 + 3 2

2 2 · 5 - 2 - 2 5 + 3 2 = 2 - 2 + 3 = 1 4 + 3 = 3 1 4

Выражения с дробями

Если выражение содержит дроби, то при вычислении такого выражения все дроби в нем нужно представить в виде обыкновенных дробей и вычислить их значения.

Если в числителе и знаменателе дроби присутствуют выражения, то сначала вычисляются значения этих выражений, и записывается финальное значение самой дроби. Арифметические действия выполняются в стандартном порядке. Рассмотрим решение примера.

Пример 9. Значение числового выражения

Найдем значение выражения, содержащего дроби: 3 , 2 2 - 3 · 7 - 2 · 3 6 ÷ 1 + 2 + 3 9 - 6 ÷ 2 .

Как видим, в исходном выражении есть три дроби. Вычислим сначала их значения.

3 , 2 2 = 3 , 2 ÷ 2 = 1 , 6

7 - 2 · 3 6 = 7 - 6 6 = 1 6

1 + 2 + 3 9 - 6 ÷ 2 = 1 + 2 + 3 9 - 3 = 6 6 = 1 .

Перепишем наше выражение и вычислим его значение:

1 , 6 - 3 · 1 6 ÷ 1 = 1 , 6 - 0 , 5 ÷ 1 = 1 , 1

Часто при нахождении значений выражений удобно бывает проводить сокращение дробей. Существует негласное правило: любое выражение перед нахождением его значения лучше всего упростить по максимуму, сводя все вычисления к простейшим случаям.

Пример 10. Значение числового выражения

Вычислим выражение 2 5 - 1 - 2 5 - 7 4 - 3 .

Мы не можем нацело извлечь корень из пяти, однако можем упростить исходное выражение путем преобразований.

2 5 - 1 = 2 5 + 1 5 - 1 5 + 1 = 2 5 + 1 5 - 1 = 2 5 + 2 4

Исходное выражение принимает вид:

2 5 - 1 - 2 5 - 7 4 - 3 = 2 5 + 2 4 - 2 5 - 7 4 - 3 .

Вычислим значение этого выражения:

2 5 + 2 4 - 2 5 - 7 4 - 3 = 2 5 + 2 - 2 5 + 7 4 - 3 = 9 4 - 3 = - 3 4 .

Выражения с логарифмами

Когда в выражении присутствуют логарифмы, их значение, если это возможно, вычисляется с самого начала. К примеру, в выражении log 2 4 + 2 · 4 можно сразу вместо log 2 4 записать значение этого логарифма, а потом выполнить все действия. Получим: log 2 4 + 2 · 4 = 2 + 2 · 4 = 2 + 8 = 10 .

Под самим знаком логарифма и в его основании также могут находится числовые выражения. В таком случае, первым делом находятся их значения. Возьмем выражение log 5 - 6 ÷ 3 5 2 + 2 + 7 . Имеем:

log 5 - 6 ÷ 3 5 2 + 2 + 7 = log 3 27 + 7 = 3 + 7 = 10 .

Если же вычислить точное значение логарифма невозможно, упрощение выражения помогает найти его значение.

Пример 11. Значение числового выражения

Найдем значение выражения log 2 log 2 256 + log 6 2 + log 6 3 + log 5 729 log 0 , 2 27 .

log 2 log 2 256 = log 2 8 = 3 .

По свойству логарифмов:

log 6 2 + log 6 3 = log 6 (2 · 3) = log 6 6 = 1 .

Вновь применяя свойства логарифмов, для последней дроби в выражении получим:

log 5 729 log 0 , 2 27 = log 5 729 log 1 5 27 = log 5 729 - log 5 27 = - log 27 729 = - log 27 27 2 = - 2 .

Теперь можно переходить к вычислению значения исходного выражения.

log 2 log 2 256 + log 6 2 + log 6 3 + log 5 729 log 0 , 2 27 = 3 + 1 + - 2 = 2 .

Выражения с тригонометрическими функциями

Бывает, что в выражении есть тригонометрические функции синуса, косинуса, тангенса и котангенса, а также функции, обратные им. Из значения вычисляются перед выполнением всех остальных арифметических действий. В противном случае, выражение упрощается.

Пример 12. Значение числового выражения

Найдите значение выражения: t g 2 4 π 3 - sin - 5 π 2 + cosπ .

Сначала вычисляем значения тригонометрических функций, входящих в выражение.

sin - 5 π 2 = - 1

Подставляем значения в выражение и вычисляем его значение:

t g 2 4 π 3 - sin - 5 π 2 + cosπ = 3 2 - (- 1) + (- 1) = 3 + 1 - 1 = 3 .

Значение выражения найдено.

Часто для того, чтобы найти значение выражения с тригонометрическими функциями, его предварительно нужно преобразовать. Поясним на примере.

Пример 13. Значение числового выражения

Нужно найти значение выражения cos 2 π 8 - sin 2 π 8 cos 5 π 36 cos π 9 - sin 5 π 36 sin π 9 - 1 .

Для преобразования будем использовать тригонометрические формулы косинуса двойного угла и косинуса суммы.

cos 2 π 8 - sin 2 π 8 cos 5 π 36 cos π 9 - sin 5 π 36 sin π 9 - 1 = cos 2 π 8 cos 5 π 36 + π 9 - 1 = cos π 4 cos π 4 - 1 = 1 - 1 = 0 .

Общий случай числового выражения

В общем случае тригонометрическое выражение может содержать все вышеописанные элементы: скобки, степени, корни, логарифмы, функции. Сформулируем общее правило нахождения значений таких выражений.

Как найти значение выражения

  1. Корни, степени, логарифмы и т.д. заменяются их значениями.
  2. Выполняются действия в скобках.
  3. Оставшиеся действия выполняются по порядку слева направо. Сначала - умножение и деление, затем - сложение и вычитание.

Разберем пример.

Пример 14. Значение числового выражения

Вычислим, чему равно значение выражения - 2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 + 1 + 3 9 .

Выражение довольно сложное и громоздкое. Мы не случайно выбрали именно такой пример, постаравшись уместить в него все описанные выше случаи. Как найти значение такого выражения?

Известно, что при вычислении значения сложного дробного вида, сначала отдельно находятся значения числителя и знаменателя дроби соответственно. Будем последовательно преобразовывать и упрощать данное выражение.

Первым делом вычислим значение подкоренного выражения 2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 . Чтобы сделать это, нужно найти значение синуса, и выражения, которое является аргументом тригонометрической функции.

π 6 + 2 · 2 π 5 + 3 π 5 = π 6 + 2 · 2 π + 3 π 5 = π 6 + 2 · 5 π 5 = π 6 + 2 π

Теперь можно узнать значение синуса:

sin π 6 + 2 · 2 π 5 + 3 π 5 = sin π 6 + 2 π = sin π 6 = 1 2 .

Вычисляем значение подкоренного выражения:

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 = 2 · 1 2 + 3 = 4

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 = 4 = 2 .

Со знаменателем дроби все проще:

Теперь мы можем записать значение всей дроби:

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 = 2 2 = 1 .

С учетом этого, запишем все выражение:

1 + 1 + 3 9 = - 1 + 1 + 3 3 = - 1 + 1 + 27 = 27 .

Окончательный результат:

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 + 1 + 3 9 = 27 .

В данном случае мы смогли вычислить точные значения корней, логарифмов, синусов и т.д. Если такой возможности нет, можно попробовать избавиться от них путем математических преобразований.

Вычисление значений выражений рациональными способами

Вычислять значения числовых нужно последовательно и аккуратно. Данный процесс можно рационализировать и ускорить, используя различные свойства действий с числами. К примеру, известно, что произведение равно нулю, если нулю равен хотя бы один из множителей. С учетом этого свойства, можно сразу сказать, что выражение 2 · 386 + 5 + 589 4 1 - sin 3 π 4 · 0 равно нулю. При этом, вовсе не обязательно выполнять действия по порядку, описанному в статье выше.

Также удобно использовать свойство вычитания равных чисел. Не выполняя никаких действий, можно заказать, что значение выражения 56 + 8 - 3 , 789 ln e 2 - 56 + 8 - 3 , 789 ln e 2 также равно нулю.

Еще один прием, позволяющий ускорить процесс - использование тождественных преобразований таких как группировка слагаемых и множителей и вынесение общего множителя за скобки. Рациональный подход к вычислению выражений с дробями - сокращение одинаковых выражений в числителе и знаменателе.

Например, возьмем выражение 2 3 - 1 5 + 3 · 289 · 3 4 3 · 2 3 - 1 5 + 3 · 289 · 3 4 . Не выполняя действий в скобках, а сокращая дробь, можно сказать, что значение выражения равно 1 3 .

Нахождение значений выражений с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных.

Нахождение значений выражений с переменными

Чтобы найти значение буквенного выражения и выражения с переменными, нужно в исходное выражение подставить заданные значения букв и переменных, после чего вычислить значение полученного числового выражения.

Пример 15. Значение выражения с переменными

Вычислить значение выражения 0 , 5 x - y при заданных x = 2 , 4 и y = 5 .

Подставляем значения переменных в выражение и вычисляем:

0 , 5 x - y = 0 , 5 · 2 , 4 - 5 = 1 , 2 - 5 = - 3 , 8 .

Иногда можно так преобразовать выражение, чтобы получить его значение независимо от значений входящих в него букв и переменных. Для этого от букв и переменных в выражении нужно по возможности избавиться, используя тождественные преобразования, свойства арифметических действий и все возможные другие способы.

Например, выражение х + 3 - х, очевидно, имеет значение 3 , и для вычисления этого значения совсем необязательно знать значение переменной икс. Значение данного выражения равно трем для всех значений переменной икс из ее области допустимых значений.

Еще один пример. Значение выражения x x равно единице для всех положительных иксов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

При слове "дроби" у многих бегут мурашки. Потому что вспоминается школа и задания, которые решались на математике. Это являлось обязанностью, которую необходимо было выполнить. А что если относиться к заданиям, содержащим правильные и неправильные дроби, как к головоломке? Ведь многие взрослые решают цифровые и японские кроссворды. Разобрались в правилах, и все. Так же и здесь. Стоит только вникнуть в теорию - и все встанет на свои места. А примеры превратятся в способ потренировать мозг.

Какие виды дробей существуют?

Для начала о том, что это такое. Дробь — число, которое имеет некоторую часть от единицы. Ее можно записать в двух видах. Первый носит название обыкновенной. То есть такая, у которой есть горизонтальная или наклонная черта. Она приравнивается к знаку деления.

В такой записи число, стоящее над черточкой, называется числителем, а под ней — знаменателем.

Среди обыкновенных выделяют правильные и неправильные дроби. У первых числитель по модулю всегда меньше знаменателя. Неправильные потому так и называются, что у них все наоборот. Значение правильной дроби всегда меньше единицы. В то время как неправильная всегда больше этого числа.

Есть еще смешанные числа, то есть такие у которых имеются целая и дробная части.

Второй вид записи — десятичная дробь. О ней отдельный разговор.

Чем отличаются неправильные дроби от смешанных чисел?

По своей сути, ничем. Это просто разная запись одного и того же числа. Неправильные дроби после несложных действий легко становятся смешанными числами. И наоборот.

Все зависит от конкретной ситуации. Иногда в заданиях удобнее использовать неправильную дробь. А порой необходимо перевести ее в смешанное число и тогда пример решится очень легко. Поэтому, что использовать: неправильные дроби, смешанные числа, - зависит от наблюдательности решающего задачу.

Смешанное число еще сравнивают с суммой целой части и дробной. Причем вторая всегда меньше единицы.

Как представить смешанное число в виде неправильной дроби?

Если требуется выполнить какое-либо действие с несколькими числами, которые записаны в разных видах, то нужно сделать их одинаковыми. Один из методов — представить числа в виде неправильных дробей.

Для этой цели потребуется выполнить действия по такому алгоритму:

  • умножить знаменатель на целую часть;
  • прибавить к результату значение числителя;
  • записать ответ над чертой;
  • знаменатель оставить тем же.

Вот примеры того, как записать неправильные дроби из смешанных чисел:

  • 17 ¼ = (17 х 4 + 1) : 4 = 69/4;
  • 39 ½ = (39 х 2 + 1) : 2 = 79/2.

Как записать неправильную дробь в виде смешанного числа?

Следующий прием противоположен рассмотренному выше. То есть когда все смешанные числа заменяются на неправильные дроби. Алгоритм действий будет таким:

  • разделить числитель на знаменатель до получения остатка;
  • записать частное на месте целой части смешанного;
  • остаток следует разместить над чертой;
  • делитель будет знаменателем.

Примеры такого преобразования:

76/14; 76:14 = 5 с остатком 6; ответом будет 5 целых и 6/14; дробную часть в этом примере нужно сократить на 2, получится 3/7; итоговый ответ — 5 целых 3/7.

108/54; после деления получается частное 2 без остатка; это значит, что не все неправильные дроби удается представить в виде смешанного числа; ответом будет целое — 2.

Как целое число превратить в неправильную дробь?

Бывают ситуации, когда необходимо и такое действие. Чтобы получить неправильные дроби с заранее известным знаменателем, потребуется выполнить такой алгоритм:

  • умножить целое число на нужный знаменатель;
  • записать это значение над чертой;
  • разместить под ней знаменатель.

Самый простой вариант, когда знаменатель равен единице. Тогда ничего умножать не нужно. Достаточно просто написать целое число, которое дано в примере, а под чертой расположить единицу.

Пример : 5 сделать неправильной дробью со знаменателем 3. После умножения 5 на 3 получается 15. Это число будет знаменателем. Ответ задания дробь: 15/3.

Два подхода к решению заданий с разными числами

В примере требуется вычислить сумму и разность, а также произведение и частное двух чисел: 2 целых 3/5 и 14/11.

В первом подходе смешанное число будет представлено в виде неправильной дроби.

После выполнения действий, описанных выше, получится такое значение: 13/5.

Для того чтобы узнать сумму, нужно привести дроби к одинаковому знаменателю. 13/5 после умножения на 11 станет 143/55. А 14/11 после умножения на 5 примет вид: 70/55. Для вычисления суммы нужно только сложить числители: 143 и 70, а потом записать ответ с одним знаменателем. 213/55 — эта неправильная дробь ответ задачи.

При нахождении разности эти же числа вычитаются: 143 - 70 = 73. Ответом будет дробь: 73/55.

При умножении 13/5 и 14/11 не нужно приводить к общему знаменателю. Достаточно перемножить попарно числители и знаменатели. Получится ответ: 182/55.

Так же и при делении. Для правильного решения нужно заменить деление на умножение и перевернуть делитель: 13/5: 14/11 = 13/5 х 11/14 = 143/70.

Во втором подходе неправильная дробь обращается в смешанное число.

После выполнения действий алгоритма 14/11 обратится в смешанное число с целой частью 1 и дробной 3/11.

Во время вычисления суммы нужно сложить целые и дробные части по отдельности. 2 + 1 = 3, 3/5 + 3/11 = 33/55 + 15/55 = 48/55. Итоговый ответ получается 3 целых 48/55. В первом подходе была дробь 213/55. Проверить правильность можно, переведя его в смешанное число. После деления 213 на 55 получается частное 3 и остаток 48. Нетрудно заметить, что ответ правильный.

При вычитании знак «+» заменяется на «-». 2 - 1 = 1, 33/55 - 15/55 = 18/55. Для проверки ответ из предыдущего подхода нужно перевести в смешанное число: 73 делится на 55 и получается частное 1 и остаток 18.

Для нахождения произведения и частного пользоваться смешанными числами неудобно. Здесь всегда рекомендуется переходить к неправильным дробям.

Примеры с дробями – один из основных элементов математики. Существует много разных типов уравнений с дробями. Ниже приведена подробная инструкция по решению примеров такого типа.

Как решать примеры с дробями – общие правила

Для решения примеров с дробями любых типов, будь то сложение, вычитание, умножение или деление, необходимо знать основные правила:

  • Для того чтобы сложить дробные выражения с одинаковым знаменателем (знаменатель – число, находящееся в нижней части дроби, числитель – в верхней), нужно сложить их числители, а знаменатель оставить тем же.
  • Для того чтобы вычесть от одного дробного выражения второе (с одинаковым знаменателем), нужно вычесть их числители, а знаменатель оставить тем же.
  • Для того чтобы сложить или вычесть дробные выражения с разными знаменателями, нужно найти наименьший общий знаменатель.
  • Для того чтобы найти дробное произведение, нужно перемножить числители и знаменатели, при этом, если есть возможность, сократить.
  • Для того чтобы разделить дробь на дробь, нужно умножить первую дробь на перевернутую вторую.

Как решать примеры с дробями – практика

Правило 1, пример 1:

Вычислить 3/4 +1/4.

Согласно правилу 1, если у дробей двух (или больше) одинаковый знаменатель, нужно просто сложить их числители. Получим: 3/4 + 1/4 = 4/4. Если у дроби числитель и знаменатель одинаковы, такая дробь будет равна 1.

Ответ: 3/4 + 1/4 = 4/4 = 1.

Правило 2, пример 1:

Вычислить: 3/4 – 1/4

Пользуясь правилом номер 2, для решения этого уравнения нужно от 3 отнять 1, а знаменатель оставить тем же. Получаем 2/4. Так как два 2 и 4 можно сократить, сокращаем и получаем 1/2.

Ответ: 3/4 – 1/4 = 2/4 = 1/2.

Правило 3, Пример 1

Вычислить: 3/4 + 1/6

Решение: Пользуясь 3-м правилом, находим наименьший общий знаменатель. Наименьшим общим знаменателем называется такое число, которое делится на знаменатели всех дробных выражений примера. Таким образом, нам нужно найти такое минимальное число, которое будет делиться и на 4, и на 6. Таким числом является 12. Записываем в качестве знаменателя 12. 12 делим на знаменатель первой дроби, получаем 3, умножаем на 3, записываем в числителе 3*3 и знак +. 12 делим на знаменатель второй дроби, получаем 2, 2 умножаем на 1, записываем в числителе 2*1. Итак, получилась новая дробь со знаменателем, равным 12 и числителем, равным 3*3+2*1=11. 11/12.

Ответ: 11/12

Правило 3, Пример 2:

Вычислить 3/4 – 1/6. Этот пример очень схож с предыдущим. Проделываем все те же действия, но в числителе вместо знака +, пишем знак минус. Получаем: 3*3-2*1/12 = 9-2/12 = 7/12.

Ответ: 7/12

Правило 4, Пример 1:

Вычислить: 3/4 * 1/4

Пользуясь четвертым правилом, умножаем знаменатель первой дроби на знаменатель второй и числитель первой дроби на числитель второй. 3*1/4*4 = 3/16.

Ответ: 3/16

Правило 4, Пример 2:

Вычислить 2/5 * 10/4.

Данную дробь можно сократить. В случае произведения сокращаются числитель первой дроби и знаменатель второй и числитель второй дроби и знаменатель первой.

2 сокращается с 4. 10 сокращается с 5. получаем 1 * 2/2 = 1*1 = 1.

Ответ: 2/5 * 10/4 = 1

Правило 5, Пример 1:

Вычислить: 3/4: 5/6

Пользуясь 5-м правилом, получим: 3/4: 5/6 = 3/4 * 6/5. Сокращаем дробь по принципу предыдущего примера и получаем 9/10.

Ответ: 9/10.


Как решать примеры с дробями – дробные уравнения

Дробными уравнениями называются примеры, где в знаменателе есть неизвестное. Для того чтобы решить такое уравнение нужно пользоваться определенными правилами.

Рассмотрим пример:

Решить уравнение 15/3x+5 = 3

Вспомним, нельзя делить на ноль, т.е. значение знаменателя не должно равняться нулю. При решении таких примеров, это нужно обязательно указывать. Для этого существует ОДЗ (область допустимых значений).

Таким образом, 3x+5 ≠ 0.
Отсюда: 3x ≠ 5.
x ≠ 5/3

При x = 5/3 уравнение просто не имеет решения.

Указав ОДЗ, наилучшим способом решить данное уравнение будет избавиться от дробей. Для это сначала представим все не дробные значения в виде дроби, в данном случае число 3. Получим: 15/(3x+5) = 3/1. Чтобы избавиться от дроби нужно умножить каждую из них на наименьший общий знаменатель. В данном случае таковым будет (3x+5)*1. Последовательность действий:

  1. Умножаем 15/(3x+5) на (3x+5)*1 = 15*(3x+5).
  2. Раскрываем скобки: 15*(3x+5) = 45x + 75.
  3. То же самое проделываем с правой частью уравнения: 3*(3x+5) = 9x + 15.
  4. Приравниваем левую и правую часть: 45x + 75 = 9x +15
  5. Переносим иксы влево, числа вправо: 36x = – 50
  6. Находим x: x = -50/36.
  7. Сокращаем: -50/36 = -25/18

Ответ: ОДЗ x ≠ 5/3 . x = -25/18.


Как решать примеры с дробями – дробные неравенства

Дробные неравенства по типу (3x-5)/(2-x)≥0 решаются при помощи числовой оси. Рассмотрим данный пример.

Последовательность действий:

  • Приравниваем числитель и знаменатель к нулю: 1. 3x-5=0 => 3x=5 => x=5/3
    2. 2-x=0 => x=2
  • Чертим числовую ось, расписывая на ней получившиеся значения.
  • Под значение рисуем кружок. Кружок бывает двух типов – заполненный и пустой. Заполненный кружок означает, что данное значение входит в ареал решений. Пустой круг говорит о том, что данное значение не входит в ареал решений.
  • Так как знаменатель не может быть равным нулю, под 2-ой будет пустой круг.


  • Чтобы определить знаки, подставляем в уравнение любое число больше двух, например 3. (3*3-5)/(2-3)= -4. значение отрицательное, значит над областью после двойки пишем минус. Затем подставляем вместо икса любое значение интервала от 5/3 до 2, например 1. Значение опять отрицательное. Пишем минус. То же самое повторяем с областью, находящейся до 5/3. Подставляем любое число, меньшее чем 5/3, например 1. Опять минус.


  • Так как нас интересуют значения икса, при котором выражение будет больше или равно 0, а таких значений нет (везде минусы), это неравенство не имеет решения, то есть x = Ø (пустое множество).

Ответ: x = Ø