Обобщающий урок "шкала электромагнитных излучений". Шкала электромагнитных излучений

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.









Хемилюминесценция При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света,причем источник света остается холодным. Светлячок Кусок дерева, пронизанный светящейся грибницей Рыба,обитающая на большой глубине




Электромагнитные излучения Радио излучение Радио излучение Инфракрасное излучение Инфракрасное излучение Видимое излучение Видимое излучение Ультрафиолетовое излучение Ультрафиолетовое излучение Рентгеновское излучение Рентгеновское излучение Гамма излучение Гамма излучение


Шкала электромагнитных излучений Шкала электромагнитных волн простирается от длинных Радиоволн до гамма – лучей. Электромагнитные волны различной Длины условно делят на диапазоны по различным признакам (способу получения, способу регистрации, характеру взаимодействия с веществом).


Все виды излучений имеют, по существу, одну и ту же физическую природу Луи де Бройль Самостоятельная работа по заполнению таблицы Виды излученийДиапазон длин волн ИсточникСвойстваПрименение Радио излучение Инфракрасное излучение Видимое излучение Ультрафиолетовое излучение Рентгеновское излучение -излучение


Виды излучений Диапазон длин волн Источник СвойстваПрименение Радиоволны 10 км (310^4 – 310 ^12 Гц) Транзисторные цепиОтражение, Преломление Дифракция Поляризация Связь и навигация Инфракрас- ное излучение 0,1 м – 770 нм (310^ 12 – 4 10 ^14 Гц) Электрический камин Отражение, Преломление Дифракция Поляризация Приготовление пищи Нагревание, сушка, Тепловое фотокопирование Видимый свет 770 – 380 нм (410^ 14 – 810 ^14 Гц) Лампа накаливания, Молнии, Пламя Отражение, Преломление Дифракция Поляризация Наблюдение за видимым миром, Преимущественно путем отражения Ультрафио летовое излучение 380 – 5 нм (810^ 14 – 610 ^16 Гц) Разрядная трубка, углеродная Дуга ФотохимическиеЛечение заболеваний кожи, уничтожение бактерий, сторожевые устройства Рентгеновс- кое излучение 5 нм– 10^ –2 нм (610^ 16 – 310 ^19 Гц) Рентгеновская трубка Проникающая способность Дифракция Рентгенография, радиология, обнаружение подделок произведений искусства - излучение 510^ ^-15 м Циклотрон Кобальт - 60 Порождаются космически ми объектами Стерилизация, Медицина, лечение рака Проверьте свои ответы

Цель урока : обеспечить в ходе урока повторение основных законов, свойств электромагнитных волн;

Образовательная: Систематизировать материал по теме, осуществить коррекцию знаний, некоторое ее углубление;

Развивающая : Развитие устной речи учащихся, творческих навыков учащихся, логики, памяти; познавательных способностей;

Воспитательная : Формировать интерес учащихся к изучению физики. воспитывать аккуратность и навыки рационального использования своего времени;

Тип урока : урок повторения и коррекции знаний;

Оборудование : компьютер, проектор, презентация «Шкала электромагнитных излучений», диск « Физика. Библиотека наглядных пособий».

Ход урока:

1. Объяснение нового материала.

1. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
2. Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g -излучения, вы уже знакомы. Самое коротковолновое g -излучение испускают атомные ядра.
3. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
4. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
5. Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g -излучениям, сильно поглощаемом атмосферой.
6. По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Обобщим знания о волнах и запишем все виде таблиц.

1. Низкочастотные колебания

Низкочастотные колебания
Длина волны(м) 10 13 - 10 5
Частота(Гц) 3· 10 -3 - 3 ·10 3
Энергия(ЭВ) 1 – 1,24 ·10 -10
Источник Реостатный альтернатор, динамомашина,
Вибратор Герца,
Генераторы в электрических сетях (50 Гц)
Машинные генераторы повышенной (промышленной) частоты (200 Гц)
Телефонные сети (5000Гц)
Звуковые генераторы (микрофоны, громкоговорители)
Приемник Электрические приборы и двигатели
История открытия Лодж (1893 г.), Тесла (1983)
Применение Кино, радиовещание(микрофоны, громкоговорители)

2. Радиоволны


Радиоволны
Длина волны(м) 10 5 - 10 -3
Частота(Гц) 3 ·10 3 - 3 ·10 11
Энергия(ЭВ) 1,24 ·10-10 - 1,24 · 10 -2
Источник Колебательный контур
Макроскопические вибраторы
Приемник Искры в зазоре приемного вибратора
Свечение газоразрядной трубки, когерера
История открытия Феддерсен (1862 г.), Герц (1887 г.), Попов, Лебедев, Риги
Применение Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок
Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация
Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация
Короткие - радиолюбительская связь
УКВ - космическая радио связь
ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь
СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение
ММВ - радиолокация

Инфракрасное излучение
Длина волны(м) 2 ·10 -3 - 7,6· 10 -7
Частота(Гц) 3 ·10 11 - 3 ·10 14
Энергия(ЭВ) 1,24· 10 -2 – 1,65
Источник Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания
Человек излучает электромагнитные волны длиной 9 10 -6 м
Приемник Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки
История открытия Рубенс и Никольс (1896 г.),
Применение В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

4. Видимое излучение

5. Ультрафиолетовое излучение

Ультрафиолетовое излучение
Длина волны(м) 3,8 10 -7 - 3 ·10 -9
Частота(Гц) 8 ·10 14 - 10 17
Энергия(ЭВ) 3,3 – 247,5 ЭВ
Источник Входят в состав солнечного света
Газоразрядные лампы с трубкой из кварца
Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)
Приемник Фотоэлементы,
Фотоумножители,
Люминесцентные вещества
История открытия Иоганн Риттер, Лаймен
Применение Промышленная электроника и автоматика,
Люминисценнтные лампы,
Текстильное производство
Стерилизация воздуха

6. Рентгеновское излучение

Рентгеновское излучение
Длина волны(м) 10 -9 - 3 ·10 -12
Частота(Гц) 3 ·10 17 - 3 ·10 20
Энергия(ЭВ) 247,5 – 1,24 ·105 ЭВ
Источник Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ. давление в баллоне – 10 -3 – 10 -5 н/м 2 , катод – накаливаемая нить. Материал анодов W,Mo, Cu, Bi, Co, Tl и др.
Η = 1-3%, излучение – кванты большой энергии)
Солнечная корона
Приемник Фотопленка,
Свечение некоторых кристаллов
История открытия В. Рентген, Милликен
Применение Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)

7. Гамма - излучение

Вывод
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

Литература:

  1. « Физика- 11» Мякишев
  2. Диск «Уроки физики Кирилла и Мефодия. 11 класс»())) «Кирилл и Мефодий, 2006)
  3. Диск « Физика. Библиотека наглядных пособий. 7-11 классы»((1С: «Дрофа» и «Формоза» 2004)
  4. Ресурсы Интернета

Многие уже знают о том, что длина электромагнитных волн, бывает совершенно разной. Значения длины волн могут быть от 103 метров (у радиоволн) до десяти сантиметров в случае рентгеновского излучения.

Световые волны – это очень маленькая часть широчайшего спектра электромагнитных излучений (волн).

Именно при изучении этого явления, были сделаны открытия, открывающие глаза ученых на другие виды излучений, обладающие довольно необычными и ранее неизвестными науке свойствами.

Электромагнитные излучения

Кардинальной разницы между различными видами электромагнитных излучений нет. Все они представляют электромагнитные волны, которые образуются за счет заряженных частиц, скорость движения которых больше, чем у частиц находящихся в нормальном состоянии.

Обнаружить электромагнитные волны можно проследив за их действием на другие заряженные частицы. В абсолютном вакууме (среда с полным отсутствием кислорода), скорость перемещения электромагнитных волн равна скорости света – 300000 километров в секунду.

Границы, установленные на шкале измерений электромагнитных волн, довольно не постоянны, а точнее условны.

Шкала электромагнитных излучений

Электромагнитные излучения, обладающие самыми разнообразными показателями длины, друг от друга отличают по тому, каким способом они получены (тепловые излучения, антенные излучения, а также излучения, полученные в результате замедления скорости вращения так называемых «быстрых» электронов).

Также, электромагнитные волны – излучения, отличаются по методам их регистрации, одним из которых является шкала электромагнитных излучений.

Объекты и процессы, существующие в космосе, такие как звезды, черные дыры, появляющиеся в результате взрыва звезд, также порождают перечисленные виды электромагнитных излучений. Исследование этих явлений осуществляется с помощью искусственно созданных спутников, ракет, запускаемых учеными и космических кораблей.

В большинстве случаев, исследовательские работы направлены на изучение гамма и рентгеновских излучений. Изучение этого вида излучений практически невозможно в полной мере исследовать на поверхности земли, так как большая часть излучений, которые выделяет солнце, задерживает атмосфера нашей планеты.

Уменьшение длины электромагнитных волн неизбежно приводит к довольно существенным качественным различиям. Электромагнитные излучения, обладающие различными показателями длины, имеют большое различие между собой, по способности веществ поглощать подобные излучения.

Излучения, обладающие низкими показателями длины волн (гамма лучи и рентгеновские излучения) слабо поглощаются веществами. Для гамма и рентгеновских лучей вещества являющиеся непрозрачными для излучений оптического диапазона, становятся прозрачными.

О чем рассказывает свет Суворов Сергей Георгиевич

Шкала электромагнитных излучений

Таким образом, шкала излучений, обнаруженных человеком в природе, оказалась очень широкой. Если идти от наиболее длинных волн к коротким, мы увидим следующую картину (рис. 27). Сначала идут радиоволны, они самые длинные. В их же число входят и излучения, открытые Лебедевым и Глаголевой-Аркадьевой; это - ультракороткие радиоволны. Далее последовательно идут инфракрасные излучения, видимый свет, ультрафиолетовые излучения, рентгеновские и, наконец, гамма-излучения.

Границы между различными излучениями весьма условны: излучения непрерывно следуют одно за другим и даже отчасти перекрывают друг друга.

Взглянув на шкалу электромагнитных волн, читатель может заключить, что видимые нами излучения составляют весьма небольшую часть известного нам общего спектра излучений.

Для обнаружения и изучения невидимых излучений физик должен был вооружиться дополнительными приборами. Невидимые излучения можно обнаружить по их действию. Так, например, радиоизлучения действуют на антенны, создавая в них электрические колебания: инфракрасные излучения сильнее всего действуют на тепловые приборы (термометры), а все остальные излучения наиболее сильно действуют на фотопластинки, вызывая в них химические изменения. Антенны, тепловые приборы, фотопластинки - это новые «глаза» физиков для различных участков шкалы электромагнитных волн.

Рис. 27. Шкала излучений. Заштрихованная сеткой область изображает часть спектра, видимую человеческим глазом

Открытие многообразных электромагнитных излучений- одна из самых блестящих страниц истории физики.

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Открытие электромагнитных волн Вернемся, однако, к Герцу. Как мы видели, в своей первой работе Герц получил быстрые электрические колебания и исследовал действие вибратора на приемный контур, особенно сильное в случае резонанса. В работе «О действии тока» Герц перешел к

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

ИНТЕРЕСНАЯ ОСОБЕННОСТЬ РЕНТГЕНОВСКИХ ИЗЛУЧЕНИЙ* Возможно, ценность изложенных здесь результатов, полученных с помощью ламп, испускающих рентгеновские излучения, в том, что они проливают дополнительный свет на природу излучений, а также лучше иллюстрируют уже известные

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Возбуждение электромагнитных волн Простейший способ возбудить электромагнитные волны - создать электрический разряд. Представим себе металлический стержень с шаром на конце, заряженный положительным электричеством, и другой такой же стержень, заряженный

Из книги История лазера автора Бертолотти Марио

Обнаружение электромагнитных волн Но электромагнитные волны в пространстве глазом не воспринимаются. Как же их обнаружить? И что, собственно, колеблется в этих волнах?Свойства водяных волн мы изучали, наблюдая за колебаниями пробки, па которую действовала водяная волна.

Из книги Атомная проблема автора Рэн Филипп

Длина волны электромагнитных волн Но там, где есть периодическое колебание, которое распространяется в пространстве, там можно говорить и о длине волны. У водяных волн мы называли длиной волны расстояние между двумя ближайшими гребнями. А что такое гребень водяной волны?

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Поиски решетки для рентгеновских излучений Однако в работе с дифракционными решетками встретились свои трудности.Дело в том, что однотипной решетки для всех излучений подобрать нельзя. Для различных излучений нужны различные решетки. Ширина светлых штрихов решетки

Из книги автора

Нашлась решетка и для рентгеновских излучений Но нашлась дифракционная решетка и для рентгеновских излучений. Сама природа пришла здесь на помощь.В конце XIX и начале XX века физики усиленно изучали строение твердых тел. Известно, что многие твердые тела являются

Из книги автора

Серии рентгеновских излучений На рентгеновские спектры атомов внешние условия не оказывают столь большого влияния. Даже когда атомы вступают в химические соединения, их внутренние слои не перестраиваются. Поэтому рентгеновские спектры молекул те же, что и спектры

Из книги автора

Задача преобразования длинноволновых излучений в видимый свет В естественных преобразователях света - люминесцентных веществах - преобразуется свет с длиной волны более короткой, чем у видимого, в свет видимый. Однако практические потребности выдвигают задачу

Из книги автора

Экспериментальное открытие электромагнитных волн Параллельно с теоретическими изучениями уравнений Максвелла проводились экспериментальные исследования по генерации электрических колебаний, получаемых при разряде обычного конденсатора в электрической цепи, и

Из книги автора

Глава XI Проблемы защиты от радиоактивных излучений Проблемы защиты от радиоактивных излучений возникают на различных ступенях использования атомной энергии:- на низшей ступени, к которой относится, например, добыча урана, являющегося основным видом ядерного

Из книги автора

I. Защита от радиоактивных излучений на атомных заводах 1) Дозы радиоактивных излучений чаще всего выражаются в рентгенах.Различные международные комиссии установили, что для работающих на атомных заводах допустимая недельная доза облучения равна 0,3 рентгена. Эта доза,

Из книги автора

9.3. Туринская шкала Когда достаточно крупный объект только что открыт, заранее не известно, какую опасность он может представлять для Земли в ближайшем или более отдаленном будущем. Не исключено, хотя и маловероятно, что получение как можно большего числа наблюдений в

Из книги автора

9.4. Палермская техническая шкала для оценки угрозы столкновения Земли с астероидами и кометами Туринская шкала, рассмотренная в предыдущем разделе, была разработана прежде всего для описания и распространения сведений об астероиднокометной опасности средствами