Строение скелетной мышечной ткани

Скелетная мускулатура является одной из основных систем человеческого организма и представляет собой активное звено двигательного аппарата.

Скелетные мышцы осуществляют движения отдельных частей тела и перемещение человека в пространстве, а также принимают активное участие в работе внутренних органов. Всего в теле человека насчитывается порядка 600 мышц.

Классификация скелетных мышц

Скелетная мускулатура состоит из волокон нескольких основных типов:

  • Медленные волокна. В них содержится большое количество белков миоглобина, связывающего кислород и являющегося своеобразным «дыхательным веществом» для мышц, аналогом гемоглобина для крови. Их называют «красными», так как они имеют темно-красный цвет. Эти волокна отвечают за поддержание позы. Переутомление в них наступает медленно из-за миоглобина и наличия митохондрий, а восстановление - быстро.
  • Быстрые волокна. Способны быстро сокращаться длительное время без утомляемости. Отсутствие утомления объясняется повышенным содержанием митохондрий и образованием АТФ при помощи окислительного фосфорилирования. Число волокон в нейромоторной единице такой мышцы меньше, чем в предыдущей.
  • Быстрые волокна с гликотическим окислением. В этих волокнах для образования АТФ используется гликолиз, в них меньше митохондрий. Мышцы с такими волокнами развиваются и сокращаются намного быстрее, но быстро утомляются. В них отсутствует белок миоглобин, в результате чего их называют «белыми».

Мышцы состоят из двигательных, или нейромоторных единиц. Часть мускулатуры, отвечающая за быстрые и точные движения, состоит из небольшого числа волокон. Мышцы, ответственные за поддержание позы, более массивны и могут содержать до нескольких тысяч таких волокон.

Основные типы мышц

В основном, все мышцы делятся на 3 типа:

  • Синергисты. Предназначены для осуществления движения только в одном направлении.
  • Антагонисты. Могут работать в разных направлениях.
  • Многофункциональные мышцы. Воздействуют более чем на один определенный сустав. Могут придавать движениям крутящий момент.

Расположение волокон в мышцах

Волокна скелетной мускулатуры могут располагаться в мышцах:

  • Параллельно растяжению. Так происходит, когда человек выполняет упражнения в быстром темпе, а уровень нагрузки при этом минимален.
  • Перпендикулярно растяжению. В этом случае используются короткие сокращения при максимальной нагрузке.

Механизмы, регулирующие силу сокращения мышц

Сила сокращения волокон мускулатуры регулируется центральной нервной системой. При этом используется два разных механизма подбора моторных единиц:

  • Для точных, координированных и тщательно рассчитанных движений во время занятий используются двигательные единицы, количество волокон в которых не превышает 30.
  • Сильные и грубые движения используют мышцы с числом волокон от 100 и выше.

Чем больше человек прикладывает мышечной силы для выполнения того или иного упражнения, тем сильнее генерируемый импульс. Благодаря этому увеличивается задействованное число мышц и производится еще большая сила приложения.

Функции скелетных мышц человека

Скелетная мускулатура входит в состав опорно-двигательной системы человека. При этом скелетные мышцы призваны выполнять следующие функции:

  • обеспечивать принятие и удержание определенной позы тела
  • перемещать тело в пространстве;
  • перемещать отдельные части человеческого тела относительно других частей;
  • выделять тепло, обеспечивая терморегуляцию организма.

Свойства скелетных мышц

Скелетная мускулатура обладает следующими физическими свойствами:

  • Возбудимость. Это состояние выражается в способности отвечать на действия раздражителей при помощи мембранного потенциала и ионной проводимости. Возбудителями могут быть медиаторы мотонейронов или миорелаксанты, которые действуют путем блокирования передачи нервного импульса. Также в лабораториях часто используются электростимуляторы.
  • Проводимость. Позволяет проводить действие вглубь и вдоль мышечного волокна согласно Т-системе.
  • Сократимость. Мышцы могут укорачиваться, а также увеличивать напряжение в условиях возбуждения.
  • Эластичность. Мышечные волокна способны развивать напряжение во время растягивания.

Тонус скелетной мускулатуры

Скелетные мышцы не могут находиться в полностью расслабленном состоянии и сохраняют определенный уровень напряжения, который называется тонусом. Тонус выражается в поддержании упругости мышц в спокойном состоянии. Он сохраняется благодаря нервным импульсам, поступающим последовательно с большими интервалами и раздражающим разные волокна.

Вместе с тем человек как высокоорганизованное существо, способен регулировать тонус по своему желанию. Например, он может полностью расслабить или напрячь мышцы, а также выбирать уровень напряжения. Для этого ему не нужно выполнять какую-либо физическую работу.

Работа скелетной мускулатуры

Основная задача скелетной мускулатуры - мышечная работа. Она полностью соответствует физическому закону А = FS, в котором определяется количество энергии, которая была затрачена на перемещение тела в определенных условиях (с использованием силы). Также существует возможность работы в изотоническом режиме, при котором сокращение мышцы происходит без нагрузки на нее.

Кроме того, выделяется изотермический режим, во время которого в условиях максимальной нагрузки мышца не укорачивается. В таком случае химическая энергия преобразуется в тепловую. При работе в естественных условиях изотермическими называются сокращения в фиксированной позе, и динамическими - в активной.

Сила и работа не остаются постоянными и эффективность занятий постепенно снижается. Такое состояние называется утомлением. Наиболее утомителен статический режим. При его использовании мышечные волокна быстрее накапливают продукты, возникающие в процессе окисления (пировиноградная, а также молочная кислота). При этом нарушается ресинтез АТФ, отвечающий за энергообеспечение сокращений мышц. Кроме того, на степень физической утомляемости влияет степень умственного напряжения во время работы. Чем она выше, тем меньше утомляются мышцы.

Виды мышц

В настоящее время различаются следующие виды мышц:

  • одноперистые, в которых мышечные пучки прикреплены с одной стороны сухожилия (такие, как сгибатели больших пальцев кистей);
  • двуперистые, в которых пучки прикрепляются с двух сторон сухожилий (такие, как длинные сгибатели больших пальцев ног);
  • многоперистые, в которых перистые группы примыкают к своим аналогам (такие, как дельтовидная мышца);
  • треугольные, в которых пучки соединяются с разных направлений (височная мышца).

Кроме того, мышцы имеют разное количество головок и могут быть:

  • двуглавыми;
  • трехглавыми;
  • четырехглавыми.

Скелетные мышцы выполняют много других функций. Например, могут обеспечить тканевое дыхание сердцу в экстренных случаях при помощи вещества оксимиоглобин (соединение кислорода и миоглобина). Поэтому развитие скелетных мышц является одной из основ спортивного и хорошего развитого тела человека, а также его здоровья.

Скелетные мышцы построены из поперечнополосатой скелетной мышечной ткани. Они являются произвольными, т.е. их сокращение осуществляется сознательно и зависит от нашего желания. Всего в теле человека насчитывается 639 мышц, 317 из них - парные, 5 - непарные.

Скелетная мышца - это орган, имеющий характерную форму и строение, типичную архитектонику сосудов и нервов, построенный в основном из поперечнополосатой мышечной ткани, покрытый снаружи собственной фасцией, обладающий способностью к сокращению.

Принципы классификации мышц . В основу классификации скелетных мышц человеческого организма положены различные признаки: область тела, происхождение и форма мышц, функция, ана-

томо-топографические взаимоотношения, направление мышечных волокон, отношение мышцы к суставам. По отношению к областям человеческого тела различают мышцы туловища, головы, шеи и конечностей. Мышцы туловища в свою очередь разделяют на мышцы спины, груди и живота. Мышцы

верхней конечности соответственно имеющимся частям скелета делят на мышцы пояса верхней конечности, мышцы плеча, предплечья и кисти. Гомологичные отделы характерны для мышц нижней конечности - мышцы пояса нижней конечности (мышцы таза), мышцы бедра, голени и стопы.

По форме мышцы могут быть простыми и сложными. К простым мышцам относят длинные, короткие и широкие. Сложными считают многоглавые (двуглавые, трехглавые, четырехглавые), многосухожильные, двубрюшные мышцы. Сложными являются также мышцы определенной геометрической формы: круглые, квадратные, дельтовидные, трапециевидные, ромбовидные и т. д.

По функции различают мышцы-сгибатели и разгибатели; мышцы приводящие и отводящие; вращающие (ротаторы); сфинктеры (суживатели) и дилятаторы (расширители). Вращающие мышцы в

зависимости от направления движения подразделяют на пронаторы и супинаторы (вращающие внутрь и наружу). Также предусматривается подразделение их на синергисты и антагонисты. Синергисты - это мышцы, выполняющие одинаковую функцию и при этом усиливающие друг друга. Антагонисты - это мышцы, выполняющие противоположные функции, т.е. производящие противоположные друг другу движения.

По расположению - поверхностные и глубокие; наружные и внутренние; медиальные и латеральные.

По направлению мышечных волокон - с параллельным, косым, круговым и поперечным ходом мышечных волокон.

Строение мышц. Скелетная мышца как орган включает в себя собственно мышечную и сухожильную части, систему соединительнотканных оболочек, собственные сосуды и нервы. Средняя, утолщенная часть мышцы называется брюшком. На обоих концах мышцы в большинстве случаев находятся сухожилия, с помощью которых она прикрепляется к костям. Структурно-функциональной единицей собственно мышечной части является поперечнополосатое мышечное волокно .

В процессе мышечного сокращения актиновые нити втягиваются в промежутки между миозиновыми, изменяют свою конфигурацию, сцепляются друг с другом. Обеспечение энергией этих процессов происходит за счет расщепления в митохондриях молекул АТФ.

Функциональная единица мышцы - мион - совокупность поперечнополосатых мышечных волокон, иннервируемых одним двигательным нервным волокном. Вспомогательным аппаратом скелетных мышц являются фасции, фиброзные и костно-фиброзные каналы, синовиальные влагалища, синовиальные сумки, мышечные блоки и сесамовидные кости. Фасции представляют собой соединительнотканные оболочки, ограничивающие подкожную жировую клетчатку, покрывающие мышцы и некоторые внутренние органы.

Создано 24.03.2016

Пожалуй, нельзя начать занятия силовыми тренировками, не зная названия мышц и где они находятся.

Ведь знание строения тела и понимание смысла и структуры тренировок значительно повышает результативность силового тренинга.

Виды мышц

Есть три вида мышечной ткани:

гладкие мышцы

Гладкие мышцы образуют стенки внутренних органов, дыхательных проходов и кровеносных сосудов. Медленные и однообразные движения гладких мышц продвигают вещества через органы (например, продукты питания через желудок или мочу через мочевой пузырь). Гладкие мышцы непроизвольные, то есть работают независимо от нашего сознания, непрерывно в течение всей жизни.

сердечная мышца (миокард)

Отвечает за перекачивание крови по всему телу. Также, как и гладкие мышцы, не может контролироваться сознательно. Сердечная мышца быстро сокращается и интенсивно работает всю жизнь.

скелетные (поперечно-полосатые) мышцы

Единственная мышечная ткань, которая управляется сознанием. Скелетных мышц более 600 и они составляют около 40 процентов от массы тела человека. У пожилых людей масса скелетных мышц уменьшается до 25-30%. Однако, при регулярной высокой мышечной активности масса мышц сохраняется до глубокой старости.

Основная функция скелетных мышц: приводить кости в движение и поддерживать позу и положение тела. Мышцы, ответственные за поддержание позы тела, имеют наибольшую выносливость из всех мышц в теле. Кроме того, скелетные мышцы выполняют терморегуляционную функцию, являясь источником тепла.

Строение скелетных мышц

Мышечная ткань содержит множество длинных волокон (миоцитов), соединенных в пучок (от 10 до 50 миоцитов в одном пучке). Из этих пучков формируется брюшко скелетной мышцы. Каждый пучок миоцитов, также как и сама мышца, покрыт плотной оболочкой из соединительной ткани. На концах оболочка переходит в сухожилия, которые прикрепляются к костям в нескольких точках.

Между пучками мышечных волокон проходят кровеносные сосуды (капилляры) и нервные волокна.

Каждое волокно состоит из более мелких нитей - миофибрилл. Они состоят из еще более мелких частиц, называемых саркомерами. Они произвольно сокращаются под воздействием нервных импульсов, посылаемых от головного и спинного мозга, производя движение суставов. Хотя наши движения находятся под нашим сознательным контролем, мозг может узнать паттерны движений, так что мы можем выполнять определенные задачи, такие как ходьба, не думая.

Силовые тренировки способствуют увеличению количества миофибрилл мышечного волокна и их поперечного сечения. Сначала увеличивается сила мышцы, а затем - её толщина. Но количество самих мышечных волокон не меняется и оно заложено генетически. Отсюда вывод: те, у кого мышцы состоят из большего количества волокон, имеют больше шансов увеличить толщину мышц силовыми тренировками, нежели те, у кого мышцы содержат меньше волокон.

Толщина и количество миофибрилл (поперечное сечение мышцы) определяет силу скелетной мышцы. Показатели силы и мышечной массы возрастают не одинаково: когда мышечная масса увеличивается в два раза, то сила мышц становится в три раза больше.

Есть два типа волокон скелетной мышцы:

  • медленные (ST-волокна)
  • быстрые (FT-волокна)

Медленные волокна также называют красными, поскольку они содержат большое количество белка красного цвета - миоглобина. Эти волокна выносливые, но работают с нагрузкой в пределах 20-25% от максимальной силы мышц.

Быстрые волокна содержат мало миоглобина и поэтому их еще называют белыми. Они сокращаются в два раза быстрее медленных волокон и способны развить силу в десять раз больше.

Когда нагрузка меньше 25% от максимальной мышечной силы, работают медленные волокна. А когда наступает их истощение, работать начинают быстрые волокна. Когда будет израсходована и их энергия, наступает истощение и мышце требуется отдых. Если нагрузка сразу большая, то оба вида волокон работают одновременно.

Разные типы мышц, выполняющие разные функции, имеют разное соотношение быстрых и медленных волокон. Например, бицепс содержит больше быстрых волокон, чем медленных, а камбаловидная мышца состоит в основном из медленных. Какой тип волокон будет преимущественно задействован в работе в данный момент зависит не от скорости выполнения движения, а от усилия, которое необходимо на него потратить.

Соотношение быстрых и медленных волокон в мышцах каждого человека заложено генетически и неизменно всю жизнь.

Скелетные мышцы получили свои названия исходя из формы, расположения, количества мест прикрепления, места присоединения, направления мышечных волокон, функций.

Классификация скелетных мышц

по форме

  • веретенообразная
  • квадратная
  • треугольная
  • лентовидная
  • круговая

по числу головок

  • двуглавая
  • трехглавая
  • четырехглавая

по числу брюшек

  • двубрюшная

по направлению мышечных пучков

  • одноперистая
  • двуперистая
  • многоперистая

по функции

  • сгибатель
  • разгибатель
  • вращатель-подниматель
  • сжиматель (сфинктер)
  • отводящая (абдуктор)
  • приводящая (аддуктор)

по расположению

  • поверхностная
  • глубокая
  • медиальная
  • латеральная

Скелетные мышцы человека разделяют на большие группы. Каждая большая группа делится на мышцы отдельных областей, которые могут быть расположены слоями. Все скелетные мышцы парные и расположены симметрично. Лишь диафрагма является непарной мышцей.

головы

  • мимические мышцы
  • жевательные мышцы

туловища

  • мышцы шеи
  • мышцы спины
  • мышцы груди
  • диафрагма
  • мышцы живота
  • мышцы промежности

конечностей

  • мышцы плечевого пояса
  • мышцы плеча
  • мышцы предплечья
  • мышцы кисти

  • мышцы таза
  • мышцы бедра
  • мышцы голени
  • мышцы стопы

Скелетные мышцы по отношению к суставам расположены не одинаково. Расположение определяется их строением, топографией и функцией.

  • односуставные мышцы - прикреплены к смежным костям и действуют только на один сустав
  • двусуставные, многосуставные мышцы - перекидываются через два и более суставов

Многосуставные мышцы, как правило, длиннее односуставных и расположены более поверхностно. Эти мышцы начинаются на костях предплечья или голени и прикрепляются к костям кисти или стопы, к фалангам пальцев.

Скелетные мышцы имеют многочисленные вспомогательные аппараты:

  • фасции
  • фиброзные и синовиальные влагалища сухожилий
  • синовиальные сумки
  • блоки мышц

Фасция - соединительная оболочка, образующая чехол мышцы.

Фасции разделяют отдельные мышцы и группы мышц друг от друга, выполняют механическую функцию, облегчая работу мышц. Как правило, мышцы соединены с фасциями с помощью соединительной ткани. Некоторые мышцы начинаются от фасции и прочно с ними сращены.

Строение фасций зависит от функции мышц и от силы, которую испытывает фасция при сокращении мышцы. Где мышцы хорошо развиты, фасции более плотные. Мышцы, которые несут небольшую нагрузку, окружены рыхлой фасцией.

Синовиальное влагалище отделяет движущееся сухожилие от неподвижных стенок фиброзного влагалища и устраняет их взаимное трение.

Также устраняют трение синовиальные сумки, которые имеются в зонах, где сухожилие или мышца перекидывается через кость, через соседнюю мышцу или в месте контакта двух сухожилий.

Блок является точкой опоры для сухожилия, обеспечивая постоянное направление его движения.

Скелетные мышцы редко работают сами по себе. Чаще всего они работают в группах.

4 типа мышц по характеру их действия:

агонист - непосредственно выполняет какое-либо конкретное движение определенной части тела и несет основную нагрузку при этом движении

антагонист - выполняет противоположное движение по отношению к мышце агонисту

синергист - включается в работу вместе с агонистом и помогает ему ее совершать

стабилизатор - удерживают остальную часть тела при выполнении движения

Синергисты находятся на стороне агонистов и/или неподалеку от них. Агонисты и антагонисты обычно расположены на противоположных сторонах костей рабочего сустава.

Сокращение агониста может привести к рефлекторному расслаблению ее антагониста - взаимное торможение. Но это явление происходит не при всех движениях. Иногда возникает совместное сжатие.

Биомеханические свойства мышц:

Сократимость - способность мышцы сокращаться при возбуждении. Мышца укорачивается и возникает сила тяги.

Сокращение мышц происходит по разному:

-динамическое сокращение - напряжение в мышце, которое изменяет ее длину

Благодаря этому и совершаются движения в суставах. Динамическое сокращение мышц бывает концентрическим (мышца укорачивается) и эксцентрическим (мышца удлиняется).

-изометрическое сокращение (статическое) - напряжение в мышце, при котором ее длина не меняется

При возникающем напряжении в мышце в суставе не происходит никакого движения.

Упругость - способность мышцы восстанавливать первоначальную длину после устранения деформирующей силы. При растяжении в мышце возникает энергия упругой деформации. Чем больше растянута мышца, тем больше энергии в ней запасено.

Жесткость - способность мышцы противодействовать прикладываемым силам.

Прочность - определяется величиной растягивающей силы, при которой происходит разрыв мышцы.

Релаксация - свойство мышцы, которое проявляется в постепенном уменьшении силы тяги при постоянной длине мышцы.

Силовые тренировки способствуют росту мышечной ткани и увеличивают силу скелетных мышц, улучшают работу гладких мышц и сердечной мышцы. За счет того, что сердечная мышца работает более интенсивно и эффективно, улучшается кровоснабжение не только всего организма, но и самих скелетных мышц. Благодаря этому они способны переносить больше нагрузки. Хорошо развитые, благодаря тренировкам, мышцы обеспечивают лучшую поддержку внутренних органов, что благотворно влияет на нормализацию пищеварения. В свою очередь, хорошее пищеварение обеспечивает питание всех органов, и в частности мышц.

Функции скелетных мышц и упражнения для тренировки

Мышцы верхней части тела

Двуглавая мышца плеча (бицепс) - сгибает руку в локте, проворачивает кисть наружу, напрягает руку в локтевом суставе.

Упражнения с сопротивлением: все типы сгибаний рук; движения при гребле.

Подтягивание на перекладине, лазанье по канату, гребля.

Большая грудная мышца: ключичная грудинная (грудь) - приводит руку вперед, внутрь, вверх и вниз.

Упражнения с сопротивлением: жимы лежа под любым углом, разведение рук лежа, отжимания от пола, тяги над головой, отжимания на брусьях, скрещивания рук на блоках.

Грудино-ключично-сосцевидная мышца (шея) - наклоняет голову в стороны, поворачивает голову и шею, наклоняет голову вперед и назад.

Упражнения с сопротивлением: упражнения с головными лямками, борцовский мост, упражнения с сопротивлением партнера и самосопротивлением.

Борьба, бокс, футбол.

Клювоплечевая мышца - поднимает руку к плечу, подтягивает руку к телу.

Упражнения с сопротивлением: разведения, подъемы рук вперед, жим на скамье лежа.

Метания, боулинг, борьба на руках.

Плечевая мышца (плечо) - приводит предплечье к плечу.

Упражнения с сопротивлением: все типы сгибаний рук, сгибание обратным хватом, движения гребкового типа.

Подтягивание, лазанье по канату, борьба на руках, тяжелая атлетика.

Группа мышц предплечья : плечелучевая, длинный лучевой разгибатель кисти, локтевой разгибатель кисти, отводящая мышца и разгибатель большого пальца (предплечье) - приводит предплечье к плечу, сгибает и выпрямляет кисть и пальцы.

Упражнения с сопротивлением: сгибание рук в запястьях, работа на кистевом роллере, «сгибание Зоттмэна», удержание дисков штанги в пальцах.

Все виды спорта, соревнования силовиков с использованием рук.

Прямая мышца живота (брюшной пресс) - наклоняет позвоночник вперед, стягивает переднюю стенку живота, разводит ребра.

Упражнения с сопротивлением: все типы подъемов туловища из положения лежа, то же по сокращенной амплитуде, подъемы на «римском стуле».

Гимнастика, прыжки с шестом, борьба, ныряние, плавание.

Большая передняя зубчатая мышца (зубчатые мышцы) - поворачивает лопатку вниз, разводит лопатки, расширяет грудную клетку, поднимает руки над головой.

Упражнения с сопротивлением: «пуловеры», жимы стоя.

Тяжелая атлетика, метания, бокс, прыжки с шестом.

Косые наружные мышцы живота (косые мышцы) - сгибают позвоночник вперед и в стороны, стягивают переднюю стенку брюшной полости.

Упражнения с сопротивлением: наклоны в стороны, скручивание торса, подъемы туловища со скручиванием.

Толкание ядра, метание копья, борьба, футбол, теннис.

Трапециевидная мышца (трапеции) - поднимает и опускает плечевой пояс, передвигает лопатки, отводит голову назад и наклоняет в стороны.

Упражнения с сопротивлением: поднимания плеч, подъемы штанги на грудь, жим из-за головы, подъемы в стороны рук выше головы, гребковые движения.

Тяжелая атлетика, борьба, гимнастика, стойка на руках.

Группа дельтовидных мышц : передняя головка, боковая головка, задняя головка (дельтоиды) - поднимают руки до горизонтального положения (каждая головка поднимает руку в специфическом направлении: передняя - вперед, боковая - в стороны, задняя - назад).

Упражнения с сопротивлением: все жимы со штангой, гантелями; жимы лежа (передняя дельта); подъемы гантелей вперед, в стороны и назад; подтягивания на перекладине (задняя дельта).

Тяжелая атлетика, гимнастика, толкание ядра, бокс, метания.

Трехглавая мышца (трицепс) - выпрямляет руку и отводит ее назад.

Упражнения с сопротивлением: выпрямления рук, жимы вниз на блоке, жимы лежа узким хватом; все упражнения, включающие выпрямления рук. Выполняет вспомогательную роль в гребковых упражнениях.

Стойка на руках, гимнастика, бокс, гребля.

Широчайшие мышцы спины (широчайшие мышцы) - отводят руку вниз и назад, расслабляют плечевой пояс, способствуют усиленному дыханию, сгибают торс в сторону.

Упражнения с сопротивлением: все виды подтягиваний и тяг на блоках, движения типа гребка, "пуловеры».

Тяжелая атлетика, гребля, гимнастика.

Группа мышц спины : надостная мышца, малая круглая мышца, большая круглая мышца, ромбовидная (спина) - поворачивают руку наружу и внутрь, помогают в отведении руки назад, поворачивают, поднимают и сводят лопатки.

Упражнения с сопротивлением: приседания, становая тяга, движения типа гребка, подъемы туловища из положения лежа ничком.

Тяжелая атлетика, борьба, толкание ядра, гребля, плавание, защита в футболе, танцевальные движения.

Мышцы нижней части тела

Квадрицепсы : широкая наружная мышца бедра, прямая мышца, широкая внутренняя мышца, портняжная мышца (квадрицепс) - выпрямляют ноги, тазобедренный сустав; сгибают ноги, тазобедренный сустав; поворачивают ногу наружу и внутрь.

Упражнения с сопротивлением: все формы приседаний, жимов ногами и выпрямлений ног.

Скалолазание, велоспорт, тяжелая атлетика, легкая атлетика, балет, футбол, коньки, европейский футбол, пауэрлифтинг, спринты, танцы.

Бицепс бедра : полуперепончатая мышца, полусухожильная мышца (бицепс бедра) - различные действия: сгибание ног, поворот бедра внутрь и наружу, разгибание бедра.

Упражнения с сопротивлением: сгибания ног, становая тяга с выпрямленными ногами, Гаккен-приседы с широкой постановкой ступней.

Борьба, спринт, коньки, балет, бег с препятствиями, плавание, прыжки, тяжелая атлетика, пауэрлифтинг.

Большая ягодичная мышца (ягодицы) - выпрямляет и поворачивают бедро наружу.

Упражнения с сопротивлением: приседы, жимы ногами, становые тяги.

Тяжелая атлетика, пауэрлифтинг, лыжи, плавание, спринты, велоспорт, скалолазание, танцы.

Икроножная мышца (голень) - выпрямляет стопу, способствует напряжению ноги в колене, «выключению» коленного сустава.

Упражнения с сопротивлением: подъемы на носки стоя, «ослиные» подъемы, полуприседы или четверть-приседы.

Все формы прыжков и бега, велоспорт, балет.

Камбаловидная мышца

Упражнения с сопротивлением: подъемы на носки сидя.

Группа передней поверхности голени : передняя большеберцовая, длинная малоберцовая - выпрямляет, сгибает и поворачивает ступню.

Упражнения с сопротивлением: подъемы на носки стоя и сидя, поднимание пальцев ног.

Лекция 6. ОДА. МЫШЕЧНАЯ СИСТЕМА

1. Строение и функции скелетных мышц

2. Классификация скелетных мышц

4. Мышцы тела человека

Строение и функции скелетных мышц

Скелетные мышцы являются активной частью опорно-двигательного аппарата. Построены эти мышцы из поперечнополосатых (исчерченных) мышечных волокон. Мышцы прикрепляются к костям скелета и при своем сокращении (укорочении) приводят костные рычаги в движение. Мышцы удерживают положение тела и его частей в пространстве, перемещают костные рычаги при ходьбе, беге и других движениях, выполняют жевательные, глотательные и дыхательные движения, участвуют в артикуляции речи и мимике, вырабатывают тепло.

В теле человека насчитывается около 600 мышц, большинство из которых парные. Масса скелетных мышц у взрослого человека достигает 30-40 % массы тела. У новорожденных и детей на долю мышц приходится до 20-25 % массы тела. В пожилом и старческом возрасте масса мышечной ткани не превышает 20-30 %.

Каждая мышца состоит из большого числа мышечных волокон. Каждое волокно имеет тонкую оболочку - эндомизий, образованный небольшим количеством соединительнотканных волокон. Пучки мышечных волокон окружены рыхлой волокнистой соединительной тканью, получившей название внутреннего перимизия, который отделяет мышечные пучки друг от друга. Снаружи мышца также имеет тонкую соединительнотканную оболочку - наружный перимизий, тесно сращенный с внутренним перимизием проникающими внутрь мышцы пучками соединительнотканных волокон. Соединительнотканные волокна, окружающие мышечные волокна и их пучки, выходя за пределы мышцы, образуют сухожилие.

В каждой мышце разветвляется большое число кровеносных сосудов, по которым кровь приносит к мышечным волокнам питательные вещества и кислород, а уносит продукты обмена веществ. Источником энергии для мышечных волокон является гликоген. В процессе его расщепления вырабатывается аденозинтрифосфорная кислота (АТФ), используемая для мышечного сокращения. Нервы, входящие в мышцу, содержат чувствительные и двигательные волокна.

Скелетные мышцы обладают такими свойствами, как возбудимость, проводимость и сократимость. Мышцы способны под влиянием нервных импульсов возбуждаться, приходить в рабочее (деятельное) состояние. При этом возбуждение быстро распространяется (проводится) от нервных окончаний (эффекторов) до сократительных структур - мышечных волокон. В результате мышца сокращается, укорачивается, приводит в движение костные рычаги.

У мышц различают сократительную часть (брюшко), построенную из поперечнополосатых мышечных волокон, и сухожильные концы (сухожилия), которые прикрепляются к костям скелета. У некоторых мышц сухожилия вплетаются в кожу (мимические мышцы), прикрепляются к глазному яблоку или к соседним мышцам (у мышц промежности). Образованы сухожилия из оформленной плотной волокнистой соединительной ткани и отличаются большой прочностью. У мышц, расположенных на конечностях, сухожилия узкие и длинные. Многие лентовидные мышцы имеют широкие сухожилия, получившие название апоневрозов.

Классификация скелетных мышц

В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции.

Форма мышц . Наиболее часто встречаются мышцы веретенообразные и лентовидные (рис. 30). Веретенообразные мышцы располагаются преимущественно на конечностях, где они действуют на длинные костные рычаги. Лентовидные мышцы имеют различную ширину, они обычно участвуют в образовании стенок туловища, брюшной, грудной полостей. Веретенообразные мышцы могут иметь два брюшка, разделенные промежуточным сухожилием (двубрюшная мышца), две, три и четыре начальные части - головки (двуглавые, трехглавые, четырехглавая мышцы). Различают мышцы длинные и короткие, прямые и косые, круглые и квадратные.

Строение мышц . Мышцы могут иметь перистое строение, когда мышечные пучки прикрепляются к сухожилию с одной, двух или нескольких сторон. Это одноперистые, двуперистые, много перистые мышцы. Перистые мышцы построены из большого количества коротких мышечных пучков, обладают значительной силой. Это сильные мышцы. Однако они способны сокращаться лишь на небольшую длину. В то же время мышцы с параллельным расположением длинных мышечных пучков не очень сильные, но они способны укорачиваться до 50 % своей длины. Это ловкие мышцы, они имеются там, где движения выполняются с большим размахом.

По выполняемой функции и по действию на суставы выделяют мышцы-сгибатели и разгибатели, приводящие и отводящие, сжиматели (сфинктеры) и расширители. Различают мышцы по их расположению в теле человека: поверхностные и глубокие, латеральные и медиальные, передние и задние.

3. Вспомогательные аппараты мышц

Свои функции мышцы выполняют с помощью вспомогательных аппаратов, к которым относятся фасции, фиброзные и костно-фиброзные каналы, синовиальные сумки, блоки.

Фасции – это соединительнотканные чехлы мышц. Они разделяют мышцы на мышечные перегородки, устраняют трение мышц одна о другую.

Каналы (фиброзные и костно-фиброзные) имеются в тех местах, где сухожилия перекидываются через несколько суставов (на кисти, стопе). Служат каналы для удержания сухожилий в определенном положении при сокращении мышц.

Синовиальные влагалища образованы синовиальной оболочкой (мембраной) одна пластинка которой выстилает стенки канала, а другая окружает сухожилие и срастается с ним. Обе пластинки срастаются своими концами, образуют замкнутую узкую полость, которая содержит небольшое количество жидкости (синовии) и смачивает скользящие одна о другую синовиальные пластинки.

Синовиальные (слизистые) сумки выполняют функцию, сходную с синовиальными влагалищами. Сумки представляют собой замкнутые, наполненные синовиальной жидкостью или слизью мешочки, расположенные в местах, где сухожилие перекидывается через костный выступ или через сухожилие другой мышцы.

Блоками называют костные выступы (мыщелки, надмыщелки), через которые перекидывается мышечное сухожилие. В результате угол прикрепления сухожилия к кости увеличивается. При этом возрастает сила действия мышцы на кость.

Работа и сила мышц

Мышцы действуют на костные рычаги, приводят их в движение или удерживают части тела в определенном положении. В каждом движении обычно участвует несколько мышц. Мышцы, действующие в одном направлении называют синергистами, действующие в разных направлениях - антагонистами.

На кости скелета мышцы действуют с определенной силой и выполняют при этом работу - динамическую или статическую. При динамической работе костные рычаги изменяют свое положение, перемещаются в пространстве. При статической работе мышцы напрягаются, но длина их не изменяется, тело (или его части) удерживается в определенном неподвижном положении. Такое сокращение мышц без изменения их длины называют изометрическим сокращением. Сокращение мышцы, сопровождающееся изменением ее длины, называют изотоническим сокращением.

С учетом места приложения мышечной силы к костному рычагу и других их характеристик в биомеханике выделяют рычаги первого рода и рычаги второго порядка (рис. 32). У рычага первого рода точка приложения мышечной силы и точка сопротивления (тяжесть тела, масса груза) находятся по разные стороны от точки опоры (от сустава). Примером рычага первого рода может служить голова, которая опирается на атлант (точка опоры). Тяжесть головы (ее лицевая часть) находится по одну сторону от оси атлантозатылочного сочленения, а место приложения силы затылочных мышц к затылочной кости - по другую сторону от оси. Равновесие головы достигается при условии, когда вращающий момент прилагаемой силы (произведение силы затылочных мышц на длину плеча, равную расстоянию от точки опоры до места приложения силы) будет соответствовать вращающему моменту силы тяжести передней части головы (произведение силы тяжести на длину плеча, равную расстоянию от точки опоры до точки приложения тяжести).

У рычага второго рода и точка приложения мышечной силы, и точка сопротивления (силы тяжести) находятся по одну сторону от точки опоры (оси сустава). В биомеханике выделяют два вида рычага второго рода. У первого вида рычага второго рода плечо приложения мышечной силы длиннее плеча сопротивления. Например, стопа человека. Плечо приложения силы трехглавой мышцы голени (расстояние от пяточного бугра до точки опоры - головок плюсневых костей) длиннее плеча приложения силы тяжести тела (от оси голеностопного сустава до точки опоры). В этом рычаге имеется выигрыш в прилагаемой мышечной силе (рычаг длиннее) и проигрыш в скорости перемещения силы тяжести тела (рычаг короче). У второго вида рычага второго рода плечо приложения мышечной силы будет короче плеча сопротивления (приложения силы тяжести). Плечо от локтевого сустава до места прикрепления сухожилия двуглавой мышцы короче, чем расстояние от этого сустава до кисти, где находится приложение силы тяжести. В этом случае имеется выигрыш в и размахе перемещения кисти (длинное плечо) и проигрыш в силе, действующей на костный рычаг (короткое плечо приложения силы).

Сила действия мышцы определяется массой (весом) того груза, который эта мышца может поднять на определенную высоту при своем максимальном сокращении. Такую силу принято называть подъемной силой мышцы. Подъёмная силы мышцы зависит от количества и толщины ее мышечных волокон. У человека мышечная сила составляет 5-10 кг на 1 кв. см физиологического поперечника мышцы. Для морфофункциональной характеристики мышц существует понятие их анатомического и физиологического по перечников (рис. 33). Физиологическим поперечником мышцы называют сумму поперечного сечения (площадей) всех мышечных волокон данной мышцы. Анатомическим поперечником мышцы является величина (площадей) поперечного ее сечения в наиболее широком месте. У мышцы с продольно расположенными волокнами (лентовидной, веретенообразной мышц) величина анатомического и физиологического поперечников будут одинаковыми. При косой ориентации большого числа коротких мышечных пучков, как это имеет место у перистых мышц, физиологический поперечник будет больше анатомического.

Вращающая сила мышцы зависит не только от ее физиологического или анатомического поперечника, или подъемной силы, но и от угла прикрепления мышцы к кости. Чем больше угол, под которым мышца прикрепляется к кости, тем большее действие она может оказать на эту кость. Для увеличения угла прикрепления мышц к кости служат блоки.

Мышцы тела человека

В зависимости от расположения в теле и для удобства изучения выделяют мышцы головы, шеи, туловища; мышцы верхних и нижних конечностей.

Мышцы, расположенные в разных областях тела человека, не только выполняют различные функции, но и имеют свои особенности строения. На конечностях с их длинными костными рычагами, приспособленными для передвижения, захватывания и удерживания различных предметов, мышцы имеют, как правило, веретенообразную форму, с продольным или косым расположением мышечных волокон, узкими и длинными сухожилиями. В области туловища, в образовании его стенок, участвуют ленто видные мышцы с широкими плоскими сухожилиями. Такие широкие сухожилия называют апоневрозами. В области головы жевательные мышцы одним своим концом начинаются на неподвижных костях основания черепа, а другим концом прикрепляются к единственной подвижной части черепа - нижней челюсти. Мимические мышцы начинаются на костях черепа и прикрепляются к коже. При сокращении мимических мышц изменяется рельеф кожи лица, формируется мимика.

Профессор Суворова Г.Н.

Мышечные ткани.

Представляют собой группу тканей, которые осуществляют двигательные функции организма:

1) сократительные процессы в полых внутренних органах и сосудах

2) перемещение частей тела относительно друг друга

3) поддержание позы

4) перемещение организма в пространстве.

Мышечные ткани имеют следующие морфофункциональные характеристики:

1) Их структурные элементы имеют удлиненную форму.

2) Сократимые структуры (миофиламенты и миофибриллы) располагаются продольно.

3) Для мышечного сокращения необходимо большое количество энергии, поэтому в них:

Содержится большое число митохондрий

Имеются трофические включения

Может присутствовать железосодержащий белок миоглобин

Хорошо развиты структуры, в которых депонируются ионы Са ++

Мышечная ткань подразделяется на две основные группы

1) гладкую (неисчерченную)

2) Поперечнополосатую (исчерченную)

Гладкая мышечная ткань: имеет мезенхимное происхождение.

Кроме того, выделяют группу миоидных клеток, к ним относятся

Миоидные клетки, имеющие нейральное происхождение (образует мышцы радужки)

Миоидные клетки, имеющие эпидермальное происхождение (миоэпителиальные клетки потовых, слюнных, слезных и молочных желез)

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей:

Скелетная – из миотомов сомитов

Сердечная – из висцерального листка спланхнотома.

Скелетная мышечная ткань

Составляет около 35-40% массы тела человека. В качестве основного компонента входит в состав скелетных мышц, кроме того, образует мышечную основу языка, входит в состав мышечной оболочки пищевода и т.д.

Развитие скелетных мышц . Источник развития – клетки миотомов сомитьов мезодермы, детерминированные в направлении миогенеза. Стадии:

Миобласты

Мышечные трубочки

Дефинитивная форма миогенеза – мышечное волокно.

Строение скелетной мышечной ткани.

Структурно-функциональной единицей скелетной мышечной ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами, диаметром от 10 до 100 мкм, вариабельной длины (до 10-30 см.).

Мышечное волокно является комплексным (клеточно-симпластическим) образованием, которое состоит их двух основных компонентов

1. миосимпласта

2. миосателлитоцитов.

Снаружи мышечное волокно покрыто базальной мембраной, которая вместе с плазмолеммой миосимпласта образует так называемую сарколемму.

Миосимпласт является основным компонентом мышечного волокна как по объему, так и по выполняемой функции. Миосимпласт является гигантской надклеточной структурой, которая образуется путем слияния огромного числа миобластов в эмбриогенезе. На периферии миосимпласта располагается от нескольких сотен до нескольких тысяч ядер. Вблизи ядер локализуются фрагменты пластинчатого комплекса, ЭПС, единичные митохондрии.


Центральная часть миосимпласта заполнена саркоплазмой. Саркоплазма содержит все органеллы общего значения, а также специализированные аппараты. К ним относятся:

Сократительный

Аппарат передачи возбуждения с сарколеммы

на сократительный аппарат.

Энергетический

Опорный

Сократительный аппарат мышечного волокна представлен миофибриллами.

Миофибриллы имеют вид нитей (длина мышечного волокна) диаметром 1-2 мкм. Они обладают поперечной исчерченностью, обусловленной чередованием различно преломляющих поляризованный свет участков (дисков) – изотропных (светлых) и анизотропных (темных). Причем миофибриллы располагаются в мышечном волокне с такой степенью упорядоченности, что светлые и темные диски соседних миофибрилл точно совпадают. Это и обусловливает исчерченность всего волокна.

Темные и светлые диски в свою очередь состоят из толстых и тонких нитей, которые называются миофиламентами.

Посередине светлого диска, поперечно тонким миофиламентам проходит темная полоска – телофрагма, или Z-линия.

Участок миофибриллы, расположенный между двумя телофрагмами называют саркомером.

Саркомер считается структурно-функциональной единицей миофибриллы - он включает в себя А-диск и расположенные по обе стороны от него две половины I-диска.

Толстые нити (миофиламенты) образованы упорядоченно упакованными молекулами фибриллярного белка миозина. Каждая толстая нить состоит из 300-400 молекул миозина.

Тонкие нити содержат сократимый белок актин и два регуляторных белка: тропонин и тропомиозин.

Механизм мышечного сокращения описывается теорией скользящих нитей, которая была предложена Хью Хаксли.

В покое, при очень низкой концентрации ионов Са ++ в миофибрилле расслабленного волокна толстые и тонкие нити не соприкасаются. Толстые и тонкие филаменты беспрепятственно скользят относительно друг друга, в результате мышечные волокна не сопротивляются пассивному растяжению. Такое состояние свойственно мышце-разгибателю при сокращении соответствующего сгибателя.

Мышечное сокращение вызывается резким повышением концентрации ионов Са ++ и состоит из нескольких этапов:

Ионы Са ++ связыватся с молекулой тропонина, которая смещается, открывая на тонких нитях участки связывания миозина.

Головка миозина прикрепляется к миозин-связывающим участкам тонкой нити.

Головка миозина изменяет конформацию и совершает гребковое движение, продвигающее тонкую нить к центру саркомера.

Головка миозина связывается с молекулой АТФ, что приводит к отделению миозина от актина.

Саркотубулярная система – обеспечивает накопление ионов кальция и является аппаратом передачи возбуждения. Необходима для того волна деполяризации, проходящая по плазмолемме привела к эффективному сокращению миофибрилл. Она состоит из саркоплазматической сети и Т-трубочек.

Саркоплазматическая сеть представляет собой видоизмененую гладкую эндоплазматическую сеть и состоит из системы полостей и канальцев, которая в виде муфты окружает каждую миофибриллу. На границе А- и I-дисков трубочки сливаются, образуя пары плоских терминальных цистерн. Саркоплазматическая сеть выполняет функции депонирования и выделения ионов кальция.

Волна деполяризации, распространяемая по плазмолемме доходит вначале до Т-трубочек. Между стенкой Т-трубочки и терминальной цистерны имеются специализированные контакты, через которые волна деполяризации доходит до мембраны терминальных цистерн, после чего высвобождаются ионы кальция.

Опорный аппарат мышечного волокна представлен элементами цитоскелета, которые обеспечивают упорядоченное расположение миофиламентов и миофибрилл. К ним относятся:

Телофрагма (Z-линия) – область прикрепления тонких миофиламентов двух соседних саркомеров.

Мезофрагма (М-линия) – плотная линия, расположенная в центре А-диска, к ней прикрепляются толстые филаменты.

Кроме того, в составе мышечного волокна имеются белки, стабилизирующие его структуру, например:

Дистрофин – одним концом прикрепляется к актиновым филаментам, а другим – к комплеку гликопротеидов, которые проникают в сарколемму.

Титин – эластический белок, который тянется от М- к Z-линии, препятствует перерастяжению мышцы.

Кроме миосимпласта в состав мышечных волокон входят миосателлитоциты. Это мелкие клетки, которые располагаются между плазмолеммой и базальной мембраной, представляют собой камбиальные элементы скелетной мышечной ткани. Они активизируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию.

Различают три основных типа волокон:

Тип I (красные)

Тип IIВ (белые)

Тип IIА (промежуточные)

Волокна I типа – красные мышечные волокна, характеризуются высоким содержанием в цитоплазме миоглобина, который и придает им красный цвет, большим числом саркосом, высокой активностью окислительных ферментов(СДГ), пребладанием аэробных процессов.Эти волокна обладают способностью медленного,но длительного тонического сокращения и малой утомляемостью.

Волокна IIВ типа – белые - гликолитические, характеризуютс относительно низким содержанием миоглобина, но высоким –гликогена. Имеют больший диаметр, быстрые, тетанические, с большой силой сокращения, быстро утомляются.

Волокна IIА типа – промежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитические.

Мышца как орган – состоит из мышечных волокон, связанных воедино системой соединительной ткани, сосудов и нервов.

Каждое волокно окружено прослойкой рыхлой соединительной ткани, которая содержит кровеносные и лимфатические капилляры, обеспечивающие трофику волокна. Коллагеновые и ретикулярные волокна эндомизия вплетаются в базальную мембрану волокон.

Перимизий – окружает пучки мышечных волокон. В нем содержатся более крупные сосуды

Эпимизий – фасция. Тонкий соединительно-тканный чехол из плотной соединительной ткани, окружающий всю мышцу.