3 научные революции и смены типов рациональности. Рост научного знания. Научные революции и смена типов рациональности. Гипотеза - научное предположение, выдвигаемое для объяснения какого-либо явления. В отличие от аксиомы гипотеза должна для своего приз

История науки протекает неравномерно. Периодически происходят научные революции, означающие радикальный пересмотр общепринятых взглядов на предмет науки. Научные революции в короткий срок значительно расширяют круг знаний о данном предмете, причем это достигается не простым накоплением новых идей, а за счет внесения корректив в исходные основания, в аксиоматику научных теорий, ранее считавшихся истинными.

В результате научной революции претерпевают глубокие изменения и методы теоретического исследования. Совокупность этих методов, так сказать «угол зрения» ученого на мир, называется «типом рациональности». У каждой большой эпохи в истории науки имеется свой тип рациональности, именуемый греческим словом «парадигма» (пример, образец).

Наиболее общие виды научных революций в истории науки:

1) Внутридисциплинарные научные революции – происходящие в рамках отдельных научных дисциплин. Причинами подобных революций чаще всего служат переходы к изучению новых объектов и применение новых методов исследования.

2) Междисциплинарные научные революции – происходящие в результате взаимодействия и обмена научными идеями между различными научными дисциплинами. На ранних этапах истории науки такое взаимодействие осуществлялось путем переноса научной картины мира наиболее развитой научной дисциплины на новые, еще складывающиеся дисциплины. В современной науке междисциплинарное взаимодействие осуществляется иначе. Теперь каждая наука обладает самостоятельной картиной мира, поэтому междисциплинарное взаимодействие происходит при анализе общих черт и признаков прежних теорий и концепций.

3)Глобальные научные революции – наиболее известными из которых являются революции в естествознании, приводящие к смене научной рациональности.

Типы Рациональности:

§ классическая рациональность. Концентрирует внимание на объекте. Стремление при теоретическом объяснении и описании исключить все, что относится к субъекту, средствам и операциям его деятельности, рассматривая это как необходимое условие получения научного знания. Рефлексия – наука начинает сама себя анализировать с помощью философии. Для классического типа научной рациональности характерно противопоставление субъекта и объекта познания. Идеал познания предполагает, что можно создать одну мысленную конструкцию изучаемого объекта, которая будет одинаковая, универсальная для всех.

§ неклассическая рациональность. Учитывает связи между знаниями об объекте и характером средств и операций деятельности, выявление этих связей как условие научного описания и объяснения мира. Связи между внутринаучными и социальными ценностями и целями не служат предметом научного осмысления, хотя опосредованно определяют характер знаний и то, что именно и каким способом следует выделять и осмысливать в мире.

§ постнеклассическая рациональность. Расширяет поле осмысления деятельности, учитывая соотнесенность получаемых знаний об объекте не только с особенностью средств и операций деятельности, но и с ценностно-целевыми структурами. Причем анализируется связь внутринаучных целей с вненаучными, социальными ценностями и целями. постнеклассический тип рациональности – неразрывное соединение всех трех компонентов: объектов, средств, субъектов познания. Наука переходит к человекомерным объектам, т.е. объектом познания становится сам человек.

35. Бытие общества – предмет социальной философии.

Общество - явление сложное и неоднородное. Общества различаются по континентальному признаку, по уровню развития политической культуры социума и по ряду других признаков. По своему происхождению и структуре общества бывают национальные и полиэтнические, европейские и атлантические, открытые и закрытые и т.д.

В современном мире особую актуальность приобретает и формирования глобального общества. Все это частные случаи общественной жизни, которых можно приводить множество. Каждое общество исторически формируется экономически развивается, политически совершенствуется, идеологически определяется. Всего в структуре социальной жизни основное место принадлежит таким его составляющим, как экономика, политика и идеология, а основной проблемой любых социальных исследований является духовная жизнь личности, ее самоопределения и возможности самореализации в обществе.
Социальная среда является необходимым для существования человека, результатом его интеллектуальных и физических усилий. Человека, с одной стороны, можно считать существом, что относится к миру природы, а с другой - по определению Аристотеля, существом политической, которую невозможно представить вне общества. Таким образом нельзя отрицать двойственной природы человека, ее общественно-индивидных природы. Человек существует в обществе и влияет на развитие исторических событий или индивидуально, или коллективно. Согласно представленным в современной философии концепциями общества, субъектом социального-исторического процесса может быть как харизматический лидер, личность, так и общественные группы, классы, элиты. Ведь общество, как система социальных связей, всегда предполагает наличие высокого уровня развития общественного сознания, то есть предполагает общность людей, которые определились в своих потребностях и интересах, формируют цели общественной деятельности.

1. Название говорит о возрождении интереса к античной философии и культуре, в которых начинают видеть образец для современности. Идеалом знания становится не религиозное, а светское знание.

Для новой философской культуры были характерны:

1) антисхоластический характер (хотя для государства схоластика оставалась официальной философией и ее принципы изучались в большинстве университетов);

2) пантеизм как главный принцип мировоззрения;

3) антропоцентризм и гуманизм.

В эпоху Возрождения вырабатывается новый стиль мышления, который главную роль отводит не форме выражения идеи, а ее содержанию.

Иерархическое представление о мироздании они предложили заменить на концепцию о мире, в котором происходит взаимопроникновение земного, природного и Божественного начал.

Baжнeйшeй отличительной чертой мировоззренческой эпохи Boзpoждeния является ориентация на человека. Философия понимается как наука, обязанная помочь человеку найти свое место в жизни.

Философия в эпоху Возрождения - и это одна из ее особенностей - была включена в культуру, была феноменом, явлением культуры.

Все перемены в жизни общества сопровождались широким обновлением культуры - расцветом естественных и точных наук, литературы на национальных языках и, в особенности, философии.

В целом философия Возрождения прошла три периода:

I период - гуманистический (XIV - сер. XV в.) Данте Алигьери, Франческо Петрарка.

II период - неоплатонический (сер. XV - XVI в.) Николай Кузанский, Пикоделла Мирандолла, Парацельс.

III период - натурфилософский (XVI - нач. XVII в.) Николай Коперник, Джордано Бруно, Галилео Галилей.

Сущность философии эпохи Возрождения - антропоцентризм: признание человека, а не природы или Бога, высшим творением мироздания. Человек - вот ведущее звено всей цепи вселенского бытия. Мир - потенция Бога, но Им был задан только импульс, а дальше Природа раскрывается, как книга, и человек - венец ее творения. Он сам - Мастер. Цeнтpaльнaя фигура не Бог, а человек. Бог-начало всех вещей, а человек - центр всего мира. Oбщecтвo не продукт Бoжьeй воли, а результат деятельности людей. Чeлoвeк в своей деятельности и замыслах не может быть ничем ограничен.



Задача философии - это не противопоставление в человеке божественного и природного, духовного и материального, а раскрытие их гармонического единства.

Ha смену теизму приходит пантеизм («Бог во всем»).Xpиcтиaнcкий Бог здесь утрачивает трансцендентный, нaдпpиpoдный характер, он как бы сливается с природой, а последняя тем самым обожествляется.

Николай Кузанский (1401-1464). Анализ его учения позволяет особенно ясно увидеть различия между древнегреческой и возрожденческой трактовками бытия. Николай Кузанский, как и большинство философов его времени, ориентировался на традицию неоплатонизма. Однако при этом он переосмыслил учение неоплатоников, начиная с центрального для них понятия единого. Кузанский, разделяющий принципы христианского монизма, отвергает античный дуализм и заявляет, что «единому ничто не противоположно». А отсюда он делает характерный вывод: «единое есть все» - формула, звучащая пантеистически и прямо предваряющая пантеизм Джордано Бруно. Из утверждения, что единое не имеет противоположности, Кузанский делает вывод, что единое тождественно беспредельному, бесконечному. Бесконечное - это то, больше чего ничего не может быть. Кузанский поэтому называет его «максимумом»; единое же - это «минимум». Николай Кузанский, таким образом, открыл принцип совпадения противоположностей - абсолютного максимума и абсолютного минимума.

Абсолютный максимум, по Кузанскому, есть Бог. Бог заключает в себе все в том смысле, что все в нём, он является развитием всего в том, что сам есть во всем. Ecли рассматривать бога без вещей, то получается, что он существует, а вещи не существуют. Oтcтpaнить Бога от творений и останется небытие, ничто, - писал Hикoлaй Кузанский в своем знаменитом сочинении «Oб ученом незнании».

Кузанский фактически устраняет принцип творения мира Богом. Бог, с его точки зрения это «бесконечный максимум», а бесконечный мир, Bceлeннaя - это «ограниченный максимум». Oгpaничeнный максимум произошел от абсолютного максимума не вследствие сверхъестественного творения, а посредством ограничения, поскольку все конечные или ограниченные вещи находят свое место гдe-тo между абсолютным максимумом и абсолютным минимумом. Дyшa мира должна рассматриваться как универсальная форма, заключающая в себе все формы, что есть в действительности.

С натурфилософией эпохи Возрождения было органически связано развитие целого ряда невиданных раньше наук. Характерно, что натурфилософские взгляды Николая Кузанского о вращении Земли вокруг своей оси и вокруг Солнца предшествовали научному открытию и публикации в 1543 году Николаем Коперников его гениального произведения: "О вращении небесных кругов". Испанский математик Франсуа Виет (1540-1603) является творцом той алгебры, которую изучают и сейчас. Джон Непер ввел логарифмы. Андрей Везалий (1514-1564) положил начало изучению анатомии человека. Истоки большинства современных наук находятся в эпохе Возрождения и текут оттуда к нам непрерывными потоком. После Галилея наука так разрослась и так обогатилась, что уже ни одному ученому было не под силу знать все науки, а сейчас - знать все в своей собственной области знаний. Галилей знал всю науку своего времени.

2. Чаще всего становление теоретического исследования проходит бурно и непредсказуемо. К тому же следует иметь в виду одно важнейшее обстоятельство: обычно становление нового теоретического знания проходит на фоне уже известной теории, т. е. имеет место рост теоретического знания. Исходя из этого, философы часто предпочитают рассуждать не о становлении научной теории, а о росте научного знания. В современной западной философии проблема роста, развития знания является центральной в философии науки, представленной особенно ярко в таких течениях, как эволюционная (генетическая) эпистемология и постпозитивизм. Все человеческое знание имеет предположительный характер, в любом его фрагменте можно усомниться, и любые положения должны быть открыты для критики.

Новое теоретическое знание до поры до времени вписывается в рамки существующей теории. Но наступает такая стадия, когда подобное вписывание невозможно, налицо научная революция; на смену старой теории пришла новая. Часть бывших сторонников старой теории оказывается способной усвоить новую теорию. Те же, кому это не под силу, остаются при своих прежних теоретических ориентирах, но им становится все труднее находить себе учеников и новых сторонников.

окончательная картина развития науки, по Куну, приобретает следующий вид: длительные периоды поступательного развития и накопления знания в рамках одной парадигмы сменяются краткими периодами кризиса, ломки старой и поиска новой парадигмы. Переход от одной парадигмы к другой Кун сравнивает с обращением людей в новую религиозную веру, во-первых, потому, что этот переход невозможно объяснить логически и, во-вторых, потому, что принявшие новую парадигму ученые воспринимают мир существенно иначе, чем раньше – даже старые, привычные явления они видят как бы новыми глазами.

Научная революция - радикальное изменение процесса и содержания научного познания, связанное с переходом к новым теоретическим и методологическим предпосылкам, к новой системе фундаментальных понятий и методов, к новой научной картине мира, а также с качественными преобразованиями материальных средств наблюдения и экспериментирования, с новыми способами оценки и интерпретации эмпирических данных» с новыми идеалами объяснения, обоснованности и организации знания.

Научные революции.

1) XVII - первая половина XVIII века - становление классического естествознания. Механистическая картина мира как общенаучная картина реальности.

2) Конец XVIII - первая половина XIX века, переход естествознания в дисциплинарно организованную науку. Механическая картина мира перестает быть общенаучной, формируются биологические, химические и другие картины реальности.

3) Конец XIX - середина XX века, преобразование параметров классической науки, становление неклассического естествознания. Существенные революционизирующие события: становление релятивистской и квантовой теорий в физике, становление генетики, квантовой химии, концепции нестационарной Вселенной, возникают кибернетика и теория систем. интеграция частнонаучных картин реальности на основе понимания природы как сложной динамической системы, вместо единственно истинной теории допускается несколько содержащих элементы объективности теоретических описаний одного и того же эмпирического базиса.

4) Конец XX - начало XXI века, радикальные изменение в основаниях научного знания и деятельности - рождение новой постнеклассической науки. События - компьютеризация науки, усложнение приборных комплексов, возрастание междисциплинарных исследований, комплексных программ, сращивание эмпирических и теоретических, прикладных и фундаментальных исследований, разработка идей синергетики.

Рациональность - это тип мышления, обладающий свойствами: дискурсивности (языковой выразимости), определенности понятий (терминов), системности, обоснованности, рефлексивности.

Типы рациональности:

1) Классическая рациональность С-Ср-(О) Классическое представление о раци­ональности тесно связано с идеалом научной объективности знания. Классический идеал чистого разума не желал иметь ничего общего с реальным человеком, носителем разума. В мо­дели классической рациональности место реального человека, мыслящего, чувствующего и переживающего, занимал абстракт­ный субъект познания.

2) Неклассическая научная рациональность С-(Ср-О) Неклассическая научная рациональность оформилась в резуль­тате открытия теории относительности Эйнштейна. Неклассический тип рациональности учитывает динамическое отношение человека к реальности, в которой важное значение приобретает его активность. Субъект пребывает в открытых проблемных ситуациях и подвержен не­обходимости саморазвития при взаимодействии с внешним миром. В классической рациональности речь идет о предметности бытия, в неклассической - о процессе Становления.

3)Постнеклассическая научная рациональность (С-Ср-О) Постнеклассическая рациональность показывает, что понятие рациональности включает в себя не только логико-методологи­ческие стандарты, но и анализ целерациональных действий человека. Возникает идея плюрализма рациональности. На месте одного разума возникло много типов рациональности. Человек входит в картину мира не просто как активный ее участник, а как системообразу­ющий фактор. В контексте новой парадигмы субъект есть одно­временно и наблюдатель, и активатор. Мышление человека с его целями и ценностными ориентациями несет в себе характерис­тики, которые сливаются с предметным содержанием объекта.

Закрытая рациональность реализуется в режиме заданных целеориентиров, но не является универсальной. Открытая рациональность предпола­гает внимательное и уважитель­ное отношение к альтернативным картинам мира, возникающим в иных культурных и мировоззренческих традициях, нежели современная наука.

Этапы развития науки, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки, получили название научных революций. Главными компонентами основания пауки являются идеалы и методы исследования (представления о целях научной деятельности и способах их достижений); научная картина мира (целостная система представлений о мире, его общих свойствах и закономерностях, формирующихся на основе научных понятий и законов); философские идеи и принципы, обосновывающие цели. методы, нормы и идеалы научного исследования.

Причины революций:

1. внутри-дисциплинарное развитие, в ходе которого возникают проблемы неразрешимые в рамках данной научной дисциплины.

2. научные революции возможны благодаря междисциплинарным взаимодействиям, основанным на переносе идеалов и норм исследования из одной научной дисциплины в другую, что приводит часто к открытию явлений и законов, которые до этого не попадали в сферу научного поиска.

В зависимости от того. Какой компонент основания науки перестраивается, различают две разновидности научной революции:

а) идеалы и нормы научного исследования остаются неизменными, а картина мира пересматривается;

б) одновременно с картиной мира радикально меняются не только идеалы и нормы науки, но и ее философские основания.

революции знаменуются формированием соответствующих типов научной рациональности , под которыми понимается специфический стиль мышления и соответствующий ему продукт - научное знание. Существует 4 главных ее типа: логико-математическая, естественнонаучная, инженерно-технологическая и социально-гуманитарная. Такие перемены следует рассматривать в триединой системе взаимодействия «субъект - средства - объект»

Первая научная революция сопровождалась изменением картины мира, перестройкой видения физической реальности, созданием идеалов и норм классического естествознания. Первая научная революция произошла в ХVII в. Ее результатом было возникновение классической европейской науки, прежде всего, механики, а позже физики.

Вторая научная революция , хотя, в общем, и закончилась окончательным становлением классического естествознания, тем не менее способствовала началу пересмотра идеалов и норм научного познания, сформировавшихся в период первой научной революции. Вторая научная революция произошла в конце XVIII—первой половине XIX в. Несмотря на то. что к началу XX в. идеал классического естествознания не претерпел значительных изменений, все же есть все основания говорить о второй научной революции. Произошел переход от классической пауки, ориентированной в основном на изучение механических и физических явлений, к дисциплинарно организованной науке.

Третья и четвертая научные революции привели к пересмотру всех указанных выше компонентов основания классической науки.

Третья научная революция охватывает период с конца XIX в. до середины XX в. Революционные преобразования произошли сразу во многих науках: в физике были разработаны релятивистская и квантовая теории. в биологии — генетика, в химии — квантовая химия и т.д.

Четвертая научная революция совершилась в последнюю треть XX столетия. Она связана с появлением особых объектов исследования. что привело к радикальным изменениям в основаниях науки.

Научные революции - это те этапы развития науки, когда происходит смена исследовательских стратегий, задаваемых ее основаниями. Основания науки включают несколько компонентов. Главные среди них: идеалы и методы исследования (представления о целях научной деятельности и способах их достижения); научная картина мира (целостная система представлений о мире, его общих свойствах и закономерностях, формирующаяся на основе научных понятий и законов); философские идеи и принципы, обосновывающие цели, методы, нормы и идеалы научного исследования.

Например, в классической науке XVII-XVIII вв. идеалом было получение абсолютно истинных знаний о природе; метод познания сводился к поиску механических причин, детерминирующих наблюдаемые явления; научная картина мира носила механический характер, так как любое знание о природе и человеке редуцировалось к фундаментальным законам механики; классическая наука находила свое обоснование в идеях и принципах материалистической философии, которая рассматривала познание как отражение в разуме познающего субъекта свойств объектов, существующих вне и независимо от субъекта.

Как и почему происходят научные революции? Один из первых разработчиков этой проблемы, американский философ Т. Кун делил этапы развития науки на периоды «нормальной науки» и научной революции. В период «нормальной науки» подавляющее число представителей научного сообщества принимает определенные модели научной деятельности или парадигмы, в терминологии Куна (парадигма: греч. paradeigma - пример, образец), и в их рамках решает все научные «задачи-головоломки». В содержание парадигм входят совокупность теорий, методологических норм, ценностных стандартов, мировоззренческих установок. Период «нормальной науки» заканчивается, когда появляются проблемы и задачи, не разрешимые в рамках существующей парадигмы. Тогда она «взрывается», и ей на смену приходит новая парадигма. Так происходит революция в науке.

Можно выделить четыре научные революции. Первой из них была революция XVII в., ознаменовавшая собой становление классической науки. Вторая произошла в конце XVIII - первой половине XIX вв. и ее результатом был переход от классической науки, ориентированной в основном на изучение механических и физических явлений, к дисциплинарно организованной науке. Появление таких наук, как биология, химия, геология и др., способствует тому, что механическая картина мира перестает быть общенаучной и общемировоззренческой. Биология и геология вносят в картину мира идею развития, которой не было в механической картине мира.

Специфика объектов, изучаемых в биологии, геологии не могла быть выражена с помощью методов исследования классической науки: нужны были новые идеалы объяснения, учитывающие идею развития.

Происходят изменения и в философских основаниях науки. Центральные проблемы философии в этот период: вопросы дифференциации и интеграции научного знания, полученного в разных научных дисциплинах, соотношения различных методов научного исследования, классификация наук и поиск ее критериев.

Эта революция была вызвана появлением принципиально новых, не имеющих места в классической науке объектов исследования, что и повлекло изменения норм, идеалов, методов. Что же касается познавательных установок классической науки, то, как считает современный отечественный философ В. С. Степин, в период становления дисциплинарно организованной науки они не претерпели существенных изменений.

Третья революция охватывает период с конца XIX до середины XX в. Революционные преобразования произошли сразу во многих науках: в физике были разработаны релятивистская и квантовая теории, в биологии - генетика, в химии - квантовая химия и т. д. Возникают новые отрасли научного знания -кибернетика и теория систем. В результате сформировалось новое, неклассическое, естествознание, основания которого радикально отличались от оснований классической науки.

Идеалы и нормы неклассической науки базировались на отрицании разумно-логического содержания онтологии, способности разума строить единственно верную идеальную модель реальности, позволяющую получать единственно истинную теорию. Допускалась возможность признавать истинность сразу нескольких теорий.

Изменяется идеал объяснения и описания. Если в классической науке объяснению приписывалась способность давать характеристику объекта, как он «сам по себе», то в неклассической науке в качестве необходимого условия объективности объяснения и описания выдвигалось требование учитывать и фиксировать факт взаимодействия объекта с приборами, с помощью которых он исследовался. Наука признала, что мышлению объект не дан в его «природно-девственном», первозданном состоянии: оно изучает не объект как он есть «сам по себе», а как явилось в наблюдении его взаимодействие с прибором.

Возникла соответствующая неклассическому естествознанию картина мира, в которой появилось представление о природе как сложном динамическом и иерархизированном единстве саморегулирующихся систем.

Изменились и философские основания науки. Философия ввела в систему обоснований последней идею исторической изменчивости научного знания, признала относительность истины, разработала представление об активности субъекта познания.

Четвертая научная революция началась в последней трети XX вв. и сопровождалась появлением постнеклассической науки. Объектами исследования на этом этапе развития науки становятся сложные системные образования, которые характеризуются уже не только саморегуляцией (с такими объектами имела дело и неклассическая наука), но и саморазвитием. Научное исследование таких систем требует принципиально новых стратегий, которые частично разработаны в синергетике. Синергетика (греч. synergeia - совместный, согласованно действующий) - это направление междисциплинарных исследований, объектом которых являются процессы саморазвития и самоорганизации в открытых системах (физических, химических, биологических, экологических, когнитивных и т. д.). Было выявлено, что материя в ее форме неорганической природы способна при определенных условиях к самоорганизации. Синергетика впервые открыла механизм возникновения порядка из хаоса, беспорядка.

Это открытие было революционным, ибо прежде наука признавала эволюцию только в сторону увеличения энтропии системы, т. е. увеличения беспорядка, дезорганизации, хаоса. Синергетика обнаружила, что система в своем развитии проходит через точки бифуркации (состояния неустойчивости) и в эти моменты она имеет веерный набор возможностей выбора направления дальнейшего развития. Реализоваться этот выбор может путем небольших случайных воздействий, которые являются своеобразным «толчком» системы в формировании новых устойчивых структур. Если принять во внимание этот факт, то становится очевидным, что взаимодействие человека с такого рода системами требует повышенной ответственности, так как человеческое действие и может стать тем «небольшим случайным воздействием», которое видоизменит пространство возможных состояний системы. Субъект становится причастным к выбору системой некоторого пути развития из возможных. А так как сам выбор необратим, а возможный путь развития системы не может быть просчитан с большой достоверностью, то проблема ответственности человека за бездумное вмешательство в процесс саморазвития сложных систем становится очевидной.

Сказанное позволяет сделать вывод, что постнеклассическая наука имеет дело с системами особой сложности, требующими принципиально новых познавательных стратегий. Здесь картина мира строится на основе идей эволюции и исторического развития природы и человека. Все специальные картины мира, которые формируются в различных науках, уже не могут претендовать на адекватность. Они становятся лишь относительно самостоятельными фрагментами общенаучной картины мира.

Для изучения и описания саморазвивающихся систем с вариабельным поведением не пригодны статические идеальные модели. Требуется строить сценарии, включая в них точки бифуркации и возможные пути развития систем. Это привело к существенной перестройке норм и идеалов исследования.

Так, осуществить построение идеальной модели уже невозможно без использования компьютерных программ, которые позволяют вводить большое число переменных и цель исторической реконструкции изучаемого объекта.

Рассмотрим пример. Допустим, объектом научного исследования является биосфера - природный сложный комплекс, в который включен в качестве компонента человек. Последний в процессе своей производственной деятельности взаимодействует с биосферой и влияет на ее структуры. Чтобы узнать вредные последствия этого влияния с целью выработки запретов и ограничений на некоторые виды человеческой производственной деятельности, следует построить идеальную модель с огромным числом параметров и переменных. Для обнаружения изменений в биосфере потребуется изучение изменений, происходящих под воздействием промышленности в популяциях, биоценозах; следовательно, надо задействовать параметры, связанные с состоянием рек, озер, морей, океанов, лесов, гор, атмосферы и т. д.). Очевидно, что классическая идеальная модель не в состоянии связать в целое все это огромное число параметров и переменных. Здесь не обойтись без особого математического эксперимента на ЭВМ, без специальных компьютерных программ и т. д.

Следует отметить и еще одну существенную особенность норм и идеалов постнеклассической науки. Из вышеприведенного примера явствует, что объяснение и описание исследуемого объекта не может быть ценностно-нейтральным. В составе объективно истинного анализа будут присутствовать аксиологические факторы, а ориентация на истинность будет соотноситься с этическими и гуманистическими принципами.

По-новому строятся и философские основания постнеклассической науки. Философия фиксирует зависимость научного познания от социальности и состояния культуры, с ее ценностными и мировоззренческими ориентациями, а также признает историческую изменчивость онтологических допущений, идеалов и норм познания. Многие особенности философских оснований постнеклассической науки выражены в философии постмодерна.

Научные революции были одновременно сменой типов рациональности. Тип научной рациональности - это состояние научной деятельности, представленной как отношение «субъект - средства исследования - объект» и направленной на получение объективной истины. На разных этапах исторического развития науки, наступающих после научных революций, доминировал свой тип научной рациональности. Описанным выше научным революциям соответствуют, классический, неклассический, постнеклассический типы научной рациональности.

Классический тип рациональности в научной деятельности, понятой как отношение «субъект - средства - объект», выделяет объект в качестве главного компонента указанного отношения. При этом усилия ученого тратятся на то, чтобы как можно полнее исключить из теоретического объяснения и описания объекта все, что относится к субъекту, средствам и методам познания. В этом усматривается необходимое условие получения объективного и истинного знания об объекте. На этапе классического типа рациональности ни ученые, ни философы не учитывают активность субъекта, влияние познавательных средств на процесс познания, а также не осознают социокультурной обусловленности содержания оснований науки.

Неклассический тип научной рациональности, в отличие от классического, характеризуется осознанием влияния познавательных средств на объект. Это влияние учитывается и вводится в теоретические объяснения и описания. То есть в отношении «субъект - средства - объект» внимание исследователя акцентируется на объекте и одновременно на средствах. А так как средства познания использует субъект, то начинает приниматься во внимание его активность. Но по-прежнему не осознается тот факт, что цели науки, определяющие стратегии исследования и способы формирования, выделения объектов, обусловлены мировоззренческими и ценностными установками, доминирующими в культуре.

Постнеклассический тип рациональности - это выход на уровень осознания того факта, что знания об объекте соотносятся не только с особенностями его взаимодействия со средствами (а значит, соотносятся и с субъектом, использующим эти средства), но и с ценностно-целевыми структурами деятельности субъекта. Другими словами, признается, что субъект влияет на содержание знаний об объекте не только в силу применения особых исследовательских средств и процедур, но и в силу своих ценностно-целевых установок, которые напрямую связаны с вненаучными, социальными ценностями и целями. В постклассике социальная жизнь, ее ценности и цели признаны компонентами (явными или неявными) научного знания об объекте, что с неизбежностью перестраивает весь категориальный аппарат философии науки и гносеологии.

Смена типов рациональности есть процесс углубления рефлексивной работы мышления, сопровождающей познавательную деятельность. Ее изменение и усложнение обусловлено как внутринаучными причинами (накопление факторов, не находящих объяснения в рамках существующей научной парадигмы; открытие новых типов объектов, связанное, например, с совершенствованием приборов и приемов наблюдения, появлением новых математических методов и т. д.), так и причинами вненаучными (ценностные и мировоззренческие ориентиры и установки в культуре той или иной эпохи).

Каждый новый тип рациональности «вписан» в соответствующую ему научную парадигму. Но между ними не существует глубинного разрыва: новый тип не уничтожает прежний, а показывает границы его применимости. Поэтому, говоря о том, что нынешняя эпоха - это эпоха постнеклассической науки, нельзя «списывать в утиль» прежние типы рациональности: классический и неклассический. Их методологические приемы, нормы и идеалы научного познания по-прежнему востребованы при изучении объектов небольшой степени сложности, где постнеклассический тип рациональности зачастую оказывается избыточным.

Прогнозируя будущее науки, можно сказать, что статус доминирующего и определяющего принадлежит постнеклассическому типу рациональности.

В эпоху техногенной цивилизации определение стратегии научного поиска с необходимостью должно включать гуманистические ориентиры, т. е. вопросы, связанные с человеком и его жизнью на планете Земля.

Феномен научных революций

В динамике научного знания особую роль играют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки. Эти этапы получили название научных революций.

Что такое научная революция?

Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования.

Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях: а) как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования; б) как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки.

В истории естествознания можно обнаружить образцы обеих ситуаций интенсивного роста знаний. Примером первой из них может служить переход от механической к электродинамической картине мира, осуществленный в физике последней четверти XIX столетия в связи с построением классической теории электромагнитного поля. Этот переход, хотя и сопровождался довольно радикальной перестройкой видения физической реальности, существенно не менял познавательных установок классической физики (сохранилось понимание объяснения как поиска субстанциональных оснований объясняемых явлений и жестко детерминированных связей между явлениями; из принципов объяснения и обоснования элиминировались любые указания на средства наблюдения и операциональные структуры, посредством которых выявляется сущность исследуемых объектов и т.д.).

Примером второй ситуации может служить история квантово-релятивистской физики, характеризовавшаяся перестройкой классических идеалов объяснения, описания, обоснования и организации знаний.

Новая картина исследуемой реальности и новые нормы познавательной деятельности, утверждаясь в некоторой науке, затем могут оказать революционизирующее воздействие на другие науки. В этой связи можно выделить два пути перестройки оснований исследования: 1) за счет внутридисциплинарного развития знаний; 2) за счет междисциплинарных связей, "прививки" парадигмальных установок одной науки на другую.

Оба эти пути в реальной истории науки как бы накладываются друг на друга, поэтому в большинстве случаев правильнее говорить о доминировании одного из них в каждой из наук на том или ином этапе ее исторического развития.

Перестройка оснований научной дисциплины в результате ее внутреннего развития обычно начинается с накопления фактов, которые не находят объяснения в рамках ранее сложившейся картины мира. Такие факты выражают характеристики новых типов объектов, которые наука втягивает в орбиту исследования в процессе решения специальных эмпирических и теоретических задач. К обнаружению указанных объектов может привести совершенствование средств и методов исследования (например, появление новых приборов, аппаратуры, приемов наблюдения, новых математических средств и т.д.).

В системе новых фактов могут быть не только аномалии, не получающие своего теоретического объяснения, но и факты, приводящие к парадоксам при попытках их теоретической ассимиляции.

Парадоксы могут возникать вначале в рамках конкретных теоретических моделей, при попытке объяснения явлений. Примером тому могут служить парадоксы, возникшие в модели излучения абсолютно черного тела и предшествовавшие идеям квантовой теории. Известно, что важную роль в ее развитии сыграло открытие Планком дискретного характера излучения. Само это открытие явилось результатом очень длительных теоретических исследований, связанных с решением задачи излучения и поглощения электромагнитных волн нагретыми телами. Для объяснения этих явлений в физике была построена конкретная теоретическая модель - абсолютно черного тела, излучающего и поглощающего электромагнитное поле. На базе этой модели, которая уточнялась и конкретизировалась под влиянием опыта, были найдены конкретные законы, один из которых описывал излучение тел в диапазоне коротких электромагнитных волн, а другой - длинноволновое электромагнитное излучение.

Задача синтеза этих законов была решена Максом Планком, который, используя уравнения электродинамики и термодинамики, нашел обобщающую формулу закона излучения абсолютно черного тела. Но из полученного Планком закона вытекали крайне неожиданные следствия: выяснилось, что абсолютно черное тело должно излучать и поглощать электромагнитную энергию порциями - квантами, равными hn, где h - это постоянная Планка, а n - частота излучения. Так возникла критическая ситуация: если принять положение, что электромагнитное поле носит дискретный характер, то это противоречило принципу тогдашней научной картины мира, согласно которому электромагнитное излучение представляет собой непрерывные волны в мировом эфире. Причем принцип непрерывности электромагнитного поля лежал в фундаменте электродинамики Максвелла и был обоснован огромным количеством опытов.

Итак, получилось, что, с одной стороны, следствие закона, проверяемого опытом, а с другой стороны, принцип, входящий в научную картину мира и подтвержденный еще большим количеством фактов, противоречат друг другу. Такого рода парадоксы являются своеобразным сигналом того, что наука натолкнулась на какой-то новый тип процесса, существенные черты которого не учтены в представлениях принятой научной картины мира.

Парадокс привел к постановке проблемы: как же реально "устроено" электромагнитное поле, является ли оно непрерывным или дискретным? Показательно, что все началось с конкретной задачи, которая была подсказана принципами физической картины мира, но затем вопрос встал о правомерности самих этих принципов, т.е. частная задача переросла в фундаментальную проблему. Планк эту проблему не смог разрешить. Он не хотел отказываться от старых принципов и стремился устранить парадокс за счет введения некоторых поправок в модель абсолютно черного тела, модернизировать ее так, чтобы конкретная теория, которую он разрабатывал, не противоречила бы ранее утвердившейся научной картине мира.

Кстати, в науке часто так бывает, что ученый, который делает открытие, не может дать ему верное истолкование. Введенные Планком дополнительные предположения, так называемые ad hoc гипотезы, которые предназначались для спасения старой картины мира, в конечном счете не решали проблему. Более того, они просто переводили парадокс на иной уровень, поскольку введение в состав теории все новых ad hoc гипотез приводит к противоречиям с фундаментальным идеалом теоретического объяснения, который требует объяснения возрастающего многообразия явлений, исходя из как можно меньшего числа постулатов. Если безгранично увеличивать количество объясняющих постулатов, то в пределе может возникнуть ситуация, когда для каждого нового факта будет вводиться новый принцип, что эквивалентно разрушению самой идеи теоретического объяснения.

Разрешил парадоксы теории А. Эйнштейн, предложив изменить представления научной картины мира о структуре электромагнитного поля, используя идею корпускулярно-волнового дуализма. Интересно, что Эйнштейн проделал работу в этой области примерно в то же время, когда создавал специальную теорию относительности. Обе эти теории были связаны с радикальной ломкой сложившейся научной картины мира, и само покушение на принципы научной картины мира было подготовлено предшествующим развитием науки и культуры.

Пересмотр картины мира и идеалов познания всегда начинается с критического осмысления их природы. Если ранее они воспринимались как выражение самого существа исследуемой реальности и процедур научного познания, то теперь осознается их относительный, преходящий характер. Такое осознание предполагает постановку вопросов об отношении картины мира к исследуемой реальности и понимании историчности идеалов познания. Постановка таких вопросов означает, что исследователь из сферы специально научных проблем выходит в сферу философской проблематики. Философский анализ является необходимым моментом критики старых оснований научного поиска.

Но кроме этой, критической функции, философия выполняет конструктивную функцию, помогая выработать новые основания исследования. Ни картина мира, ни идеалы объяснения, обоснования и организации знаний не могут быть получены чисто индуктивным путем из нового эмпирического материала. Сам этот материал организуется и объясняется в соответствии с некоторыми способами его видения, а эти способы задают картина мира и идеалы познания. Новый эмпирический материал может обнаружить лишь несоответствие старого видения новой реальности, но сам по себе не указывает, как нужно перестроить это видение.

Перестройка картины мира и идеалов познания требует особых идей, которые позволяют перегруппировать элементы старых представлений о реальности и процедурах ее познания, элиминировать часть из них, включить новые элементы с тем, чтобы разрешить имеющиеся парадоксы и ассимилировать накопленные факты. Такие идеи формируются в сфере философского анализа познавательных ситуаций науки. Они играют роль весьма общей эвристики, обеспечивающей интенсивное развитие исследований. В истории современной физики примерами тому могут служить философский анализ понятий пространства и времени, а также анализ операциональных оснований физической теории, проделанный Эйнштейном и предшествовавший перестройке представлений об абсолютном пространстве и времени классической физики.

Философско-методологические средства активно используются при перестройке оснований науки и в той ситуации, когда доминирующую роль играют факторы междисциплинарного взаимодействия. Особенности этого варианта научной революции состоят в том, что для преобразования картины реальности и норм исследования некоторой науки в принципе не обязательно, чтобы в ней были зафиксированы парадоксы. Преобразование ее оснований осуществляется за счет переноса парадигмальных установок и принципов из других дисциплин, что заставляет исследователей по-новому оценить еще не объясненные факты (если раньше считалось, по крайней мере большинством исследователей, что указанные факты можно объяснить в рамках ранее принятых оснований науки, то давление новых установок способно породить оценку указанных фактов как аномалий, объяснение которых предполагает перестройку оснований исследования). Обычно в качестве парадигмальных принципов, "прививаемых" в другие науки, выступают компоненты оснований лидирующей науки. Ядро ее картины реальности образует в определенную историческую эпоху фундамент общей научной картины мира, а принятые в ней идеалы и нормы обретают общенаучный статус. Философское осмысление и обоснование этого статуса подготавливает почву для трансляции некоторых идей, принципов и методов лидирующей дисциплины в другие науки.

Внедряясь в новую отрасль исследования, парадигмальные принципы науки затем как бы притачиваются к специфике новой области, превращаясь в картину реальности соответствующей дисциплины и в новые для нее нормативы исследования. Показательным примером в этом отношении могут служить революции в химии XVII - первой половине XIX столетия, связанные с переносом в химию из физики идеалов количественного описания, представлений о силовых взаимодействиях между частицами и представлений об атомах. Идеалы количественного описания привели к разработке в химии XVII - XVIII вв. конкретных методов количественного анализа, которые, в свою очередь, взрывали изнутри флогистонную концепцию химических процессов. Представления о силовых взаимодействиях и атомистическом строении вещества, заимствованные из механической картины мира, способствовали формированию новой картины химической реальности, в которой взаимодействия химических элементов интерпретировались как действие "сил химического сродства" (А. Лавуазье, К. Бертолле), а химические элементы были представлены в качестве атомов вещества (первый гипотетический вариант этих представлений в химии был предложен Р. Бойлем еще в XVII столетии, а в начале XIX в. благодаря работам Дальтона атомистические идеи получили эмпирическое обоснование и окончательно утвердились в химии).

Парадигмальные принципы, модифицированные и развитые применительно к специфике объектов некоторой дисциплины, затем могут оказать обратное воздействие на те науки, из которых они были первоначально заимствованы. В частности, развитые в химии представления о молекулах как соединении атомов затем вошли в общую научную картину мира и через нее оказали значительное воздействие на физику в период разработки молекулярно-кинетической теории теплоты.

На современном этапе развития научного знания в связи с усиливающимися процессами взаимодействия наук способы перестройки оснований за счет "прививки" парадигмальных установок из одной науки в другие все активнее начинают влиять на внутридисциплинарные механизмы интенсивного роста знаний и даже управлять этими механизмами.

Научная революция как выбор новых стратегий исследования

Перестройка оснований исследования означает изменение самой стратегии научного поиска. Однако всякая новая стратегия утверждается не сразу, а в длительной борьбе с прежними установками и традиционными видениями реальности.

Процесс утверждения в науке ее новых оснований определен не только предсказанием новых фактов и генерацией конкретных теоретических моделей, но и причинами социокультурного характера.

Новые познавательные установки и генерированные ими знания должны быть вписаны в культуру соответствующей исторической эпохи и согласованы с лежащими в ее фундаменте ценностями и мировоззренческими структурами.

Перестройка оснований науки в период научной революции с этой точки зрения представляет собой выбор особых направлений роста знаний, обеспечивающих как расширение диапазона исследования объектов, так и определенную скоррелированность динамики знания с ценностями и мировоззренческими установками соответствующей исторической эпохи. В период научной революции имеются несколько возможных путей роста знания, которые, однако, не все реализуются в действительной истории науки. Можно выделить два аспекта нелинейности роста знаний.

Первый из них связан с конкуренцией исследовательских программ в рамках отдельно взятой отрасли науки. Победа одной и вырождение другой программы направляют развитие этой отрасли науки по определенному руслу, но вместе с тем закрывают какие-то иные пути ее возможного развития.

Рассмотрим в качестве примера борьбу двух направлений в классической электродинамике Ампера-Вебера, с одной стороны, и Фарадея-Максвелла, с другой. Максвелл, создавая теорию электромагнитного поля, длительное время не получал новых результатов, по сравнению с теми, которые давала электродинамика Ампера-Вебера. Внешне все выглядело как вывод уже известных законов в новой математической форме. Лишь в конечном итоге, открыв фундаментальные уравнения электромагнетизма, Максвелл получил знаменитые волновые решения и предсказал существование электромагнитных волн. Их экспериментальное обнаружение привело к триумфу максвелловского направления и утвердило представления о близкодействии и силовых полях как единственно верную основу физической картины мира.

Однако в принципе эффекты, которые интерпретировались как доказательство электромагнитных волн, могли быть предсказаны и в рамках амперовского направления. Известно, что в 1845 г. К. Гаусс в письме к В. Веберу указывал, что для дальнейшего развития теории Ампера-Вебера следует в дополнение к известным силам действия между зарядами допустить существование других сил, распространяющихся с конечной скоростью. Г. Риман осуществил эту программу и вывел уравнение для потенциала, аналогичное лоренцовским уравнениям для запаздывающих потенциалов. В принципе это уравнение могло бы лечь в основу предсказания тех эффектов, которые были интерпретированы в парадигме максвелловской электродинамики как распространение электромагнитных волн. Но этот путь развития электродинамики предполагал физическую картину мира, в которой постулировалось распространение сил с различной скоростью в пустом пространстве. В такой картине мира отсутствует эфир и представление об электромагнитных полях. И тогда возникает вопрос: как могла бы выглядеть в этой нереализованной линии развития физики теория электронов, каков был бы путь к теории относительности.

Физическая картина мира, в которой взаимодействие зарядов изображалось бы как передача сил с конечной скоростью без представлений о материальных полях, вполне возможна. Показательно, что именно такой образ электромагнитных взаимодействий Р. Фейнман использовал как основу для новой формулировки классической электродинамики, опираясь на которую он развил идею построения квантовой электродинамики в терминах интегралов по траекториям. В какой-то мере можно расценивать фейнмановскую переформулировку классической электродинамики как воспроизведение в современных условиях ранее нереализованных, но потенциально возможных путей исторического развития физики. Однако при этом необходимо учитывать, что современные представления о природе формируются уже в иной научной традиции, чем в классическую эпоху, при наличии новых идеалов и норм объяснения физических процессов. Развитие квантово-релятивистской физики, утверждая эти нормы, "приучило" физиков к множественности различных формулировок теории, каждая из которых способна выразить существенные характеристики исследуемой предметной области. Физик-теоретик XX в. относится к различным математическим описаниям одних и тех же процессов не как к аномалии, а как к норме, понимая, что одни и те же объекты могут быть освоены в различных языковых средствах и что различные формулировки одной и той же физической теории являются условием прогресса исследований. В традициях современной физики лежит и оценка картины мира как относительно истинной системы представлений о физическом мире, которая может изменяться и совершенствоваться как в частях, так и в целом.

Поэтому, когда, например, Р. Фейнман развивал идеи о взаимодействиях зарядов без "полевых посредников", его не смутило то обстоятельство, что в создаваемую теорию потребовалось ввести, наряду с запаздывающими, опережающие потенциалы, что в физической картине мира соответствовало появлению представлений о влиянии взаимодействий настоящего не только на будущее, но и на прошлое. "К этому времени, - писал Р. Фейнман, - я был уже в достаточной мере физиком, чтобы не сказать: "Ну, нет, этого не может быть". Ведь сегодня после Эйнштейна и Бора все физики знают, что иногда идея, кажущаяся с первого взгляда совершенно парадоксальной, может оказаться правильной после того, как мы разберемся в ней до мельчайших подробностей и до самого конца и найдем ее связь с экспериментом". Но "быть физиком" XX в. - нечто иное, чем "быть физиком" XIX в. В классический период физик не стал бы вводить "экстравагантных" представлений о физическом мире на том основании, что у него возникает новая и перспективная математическая форма теории, детали эмпирического обоснования которой можно разработать в будущем. В классическую эпоху физическая картина мира, прежде чем генерировать новые теоретические идеи, должна была предстать как подтверждаемый опытом "наглядный портрет" реальности, который предшествовал построению теории. Формирование конкурирующих картин исследуемой реальности предполагало жесткую их конфронтацию, в условиях которой каждая из них рассматривалась своими сторонниками как единственно правильная онтология.

С этих позиций следует оценивать возможности реализации программы Гаусса-Римана в физике XIX столетия. Чтобы ввести в физическую картину мира этой эпохи представление о силах, распространяющихся с различными скоростями, нужно было обосновать это представление в качестве наглядного образа "реального устройства природы". В традициях физического мышления этой эпохи сила всегда связывалась с материальным носителем. Поэтому ее изменения во времени от точки к точке (разные скорости распространения силы) предполагали введение материальной субстанции, с состоянием которой связано изменение скорости распространения сил. Но такие представления уже лежали в русле фарадеевско-максвелловской программы и были несовместимы с картиной Ампера-Вебера (в этой картине связь силы и материи рассматривалась как взаимосвязь между электрическими силами и силами тяготения, с одной стороны, и зарядами и массами - с другой; заряды и массы представали здесь в качестве материального носителя сил; принцип же мгновенной передачи сил в пространстве исключал необходимость введения особой субстанции, обеспечивающей передачу сил от точки к точке). Таким образом, причины, по которым идея Гаусса-Римана не оставила значительного следа в истории классической электродинамики XIX столетия, коренилась в стиле физического мышления данной исторической эпохи. Этот стиль мышления с его интенцией на построение окончательно истинных представлений о сущности физического мира был одним из проявлений "классического" типа рациональности, реализованного в философии, науке и других феноменах сознания этой исторической эпохи. Такой тип рациональности предполагает, что мышление как бы со стороны обозревает объект, постигая таким путем его истинную природу.

Современный же стиль физического мышления (в рамках которого была осуществлена нереализованная, но возможная линия развития классической электродинамики) предстает как проявление иного, неклассического типа рациональности, который характеризуется особым отношением мышления к объекту и самому себе. Здесь мышление воспроизводит объект как вплетенный в человеческую деятельность и строит образы объекта, соотнося их с представлениями об исторически сложившихся средствах его освоения. Мышление нащупывает далее и с той или иной степенью отчетливости осознает, что оно само есть аспект социального развития и поэтому детерминировано этим развитием. В таком типе рациональности однажды полученные образы сущности объекта не рассматриваются как единственно возможные (в иной системе языка, в иных познавательных ситуациях образ объекта может быть иным, причем во всех этих варьируемых представлениях об объекте можно выразить объективно-истинное содержание).

Сам процесс формирования современного типа рациональности обусловлен процессами исторического развития общества, изменением "поля социальной механики", которая "подставляет вещи сознанию". Исследование этих процессов представляет собой особую задачу. Но в общей форме можно констатировать, что тип научного мышления, складывающийся в культуре некоторой исторической эпохи, всегда скоррелирован с характером общения и деятельности людей данной эпохи, обусловлен контекстом ее культуры. Факторы социальной детерминации познания воздействуют на соперничество исследовательских программ, активизируя одни пути их развертывания и притормаживая другие. В результате "селективной работы" этих факторов в рамках каждой научной дисциплины реализуются лишь некоторые из потенциально возможных путей научного развития, а остальные остаются нереализованными тенденциями.

Второй аспект нелинейности роста научного знания связан со взаимодействием научных дисциплин, обусловленным в свою очередь особенностями как исследуемых объектов, так и социокультурной среды, внутри которой развивается наука.

Возникновение новых отраслей знания, смена лидеров науки, революции, связанные с преобразованиями картин исследуемой реальности и нормативов научной деятельности в отдельных ее отраслях, могут оказывать существенное воздействие на другие отрасли знания, изменяя их видение реальности, их идеалы и нормы исследования. Все эти процессы взаимодействия наук опосредуются различными феноменами культуры и сами оказывают на них активное обратное воздействие.

Учитывая все эти сложные опосредования, в развитии каждой науки можно выделить еще один тип потенциально возможных линий в ее истории, который представляет собой специфический аспект нелинейности научного прогресса. Особенности этого аспекта можно проиллюстрировать путем анализа истории квантовой механики.

Известно, что одним из ключевых моментов ее построения была разработка Н. Бором новой методологической идеи, согласно которой представления о физическом мире должны вводиться через экспликацию операциональной схемы, выявляющей характеристики исследуемых объектов. В квантовой физике эта схема выражена посредством принципа дополнительности, согласно которому природа микрообъекта описывается путем двух дополнительных характеристик, коррелятивных двум типам приборов. Эта "операциональная схема" соединялась с рядом онтологических представлений, например, о корпускулярно-волновой природе микрообъектов, существовании кванта действия, об объективной взаимосвязи динамических и статических закономерностей физических процессов.

Однако квантовая картина физического мира не была целостной онтологией в традиционном понимании. Она не изображала природные процессы как причинно обусловленные взаимодействия некоторых объектов в пространстве и времени. Пространственно-временное и причинное описания представали как дополнительные (в смысле Бора) характеристики поведения микрообъектов.

Отнесение к микрообъекту обоих типов описания осуществлялось только через экспликацию операциональной схемы, которая объединяла различные и внешне несовместимые фрагменты онтологических представлений. Такой способ построения физической картины мира получил философское обоснование, с одной стороны, посредством ряда гносеологических идей (об особом месте в мире наблюдателя как макросущества, о коррелятивности между способами объяснения и описания объекта и познавательными средствами), а с другой - благодаря развитию "категориальной сетки", в которой схватывались общие особенности предмета исследования (представление о взаимодействиях как превращении возможности в действительность, понимание причинности в широком смысле, как включающей вероятностные аспекты, и т.д.).

Таким путем была построена концептуальная интерпретация математического аппарата квантовой механики. В период формирования этой теории описанный путь был, по-видимому, единственно возможным способом теоретического познания микромира. Но в дальнейшем (в частности, на современном этапе) наметилось видение квантовых объектов как сложных динамических систем (больших систем). Анализ квантовой теории показывает, что в самой ее концептуальной структуре имеются два уровня описания реальности: с одной стороны, понятия, описывающие целостность и устойчивость системы, с другой - понятия, выражающие типично случайные ее характеристики. Идея такого расчленения теоретического описания соответствует представлению о сложных системах, характеризующихся, с одной стороны, наличием подсистем со стохастическим взаимодействием между элементами, с другой - некоторым "управляющим" уровнем, обеспечивающим целостность системы. В пользу такого видения квантовых объектов говорят и те достижения теории квантованных полей, которые показывают ограниченность сложившихся представлений о локализации частиц.

Отмечая все эти тенденции в развитии физического знания, нельзя забывать, что само видение физических объектов как сложных динамических систем связано с концепцией, которая сформировалась благодаря развитию кибернетики, теории систем и освоению больших систем в производстве. В период становления квантовой механики эта концепция еще не сложилась в науке, и в обиходе физического мышления не применялись представления об объектах как больших системах. В этой связи уместно поставить вопрос: могла ли история квантовой физики протекать иными путями при условии иного научного окружения? В принципе допустимо (в качестве мысленного эксперимента) предположение, что кибернетика и соответствующее освоение самоорганизующихся систем в технике могли возникнуть до квантовой физики и сформировать в культуре новый тип видения объектов. В этих условиях при построении картины мира физик смог бы представить квантовые объекты как сложные динамические системы и соответственно этому представлению создавать теорию. Но тогда иначе выглядела бы вся последующая эволюция физики. На этом пути ее развития, по-видимому, были бы не только приобретения, но и потери, поскольку при таком движении не обязательно сразу эксплицировать операциональную схему видения картины мира (а значит, и не было бы стимула к развитию принципа дополнительности). То обстоятельство, что квантовая физика развилась на основе концепции дополнительности, радикально изменив классические нормы и идеалы физического познания, направило эволюцию науки по особому руслу. Появился образец нового познавательного движения, и теперь, даже если физика построит новую системную онтологию (новую картину реальности), это не будет простым возвратом к нереализованному ранее пути развития: онтология должна вводиться через построение операциональной схемы, а новая теория может создаваться на основе включения операциональных структур в картину мира.

Развитие науки (как, впрочем, и любой другой процесс развития) осуществляется как превращение возможности в действительность, и не все возможности реализуются в ее истории. При прогнозировании таких процессов всегда строят дерево возможностей, учитывают различные варианты и направления развития. Представления о жестко детерминированном развитии науки возникают только при ретроспективном рассмотрении, когда мы анализируем историю, уже зная конечный результат, и восстанавливаем логику движения идей, приводящих к этому результату. Но были возможны и такие направления, которые могли бы реализоваться при других поворотах исторического развития цивилизации, но они оказались "закрытыми" в уже осуществившейся реальной истории науки.

В эпоху научных революций, когда осуществляется перестройка оснований науки, культура как бы отбирает из нескольких потенциально возможных линий будущей истории науки те, которые наилучшим образом соответствуют фундаментальным ценностям и мировоззренческим структурам, доминирующим в данной культуре.